• 제목/요약/키워드: Gait

검색결과 2,446건 처리시간 0.026초

The effects of treadmill training on dynamic balance and gait function in stroke patients: a pilot randomized controlled trial

  • Chung, Eun Jung;Lee, Byounghee
    • Physical Therapy Rehabilitation Science
    • /
    • 제2권1호
    • /
    • pp.39-43
    • /
    • 2013
  • Objective: The objective of this study is to investigate the effect of treadmill gait trainig on dynamic balance and gait functions in stroke patients. Design: Randomized, double-blind, controlled pilot study. Methods: Four subjects following first stroke participated in this study. They were divided randomly into the treadmill gait trainig group (TM group) (n=2) and the control group (n=2). Subjects in both groups received general training five times per week. Subjects in the TM group practiced an additional treadmill gait trainig program that consisted of 60 minutes, three times per week, during a period of four weeks. Timed up and go test (dynamic balance) and the GAITRite test (gait function) were evaluated before and after the intervention. Results: In dynamic balance (timed up and go test), the TM group (-14.235 sec) showed a greater decrease than the control group (-13.585 sec). In gait functions, the TM group showed a greater increase in gait speed (12.8 cm/s vs. 10.15 cm/s), step-length (5.825 cm vs. 3.735 cm), and stride-length (5.005 cm vs. 1.55 cm) than the control group. Conclusions: The treadmill gait trainig improved dynamic balance and gait functions. Further research is needed in order to confirm the generalization of these findings and to identify which stroke patients might benefit from treadmill gait trainig.

  • PDF

Relationship between Gait, Static Balance, and Pelvic Inclination in Patients with Chronic Stroke

  • Choe, Yu-Won;Kim, Kyu-Ryeong;Kim, Myoung-Kwon
    • 대한물리의학회지
    • /
    • 제16권1호
    • /
    • pp.17-22
    • /
    • 2021
  • PURPOSE: This study examined the correlations between gait, static balance, and pelvic inclination in patients with chronic stroke. METHODS: Twenty-two chronic stroke patients were included in this study. The subjects participated in gait, static balance, and pelvic inclination tests. In the gait measurement, the cadence and gait velocity were measured, and the average of three trials was calculated and recorded. The static balance was measured using a force platform. The data was captured for ten seconds, and five successful trials were recorded. Pelvic inclination in the sagittal plane was measured using a palpation meter. For data processing, a KolmogorovSmirnov test was used to determine the type of distribution for all variables. Pearson's correlation coefficient was used for correlation analysis. The correlations among the gait, static balance, and pelvic inclination was calculated. The level of significance was .05. RESULTS: Significant negative correlations were observed between the gait variables (cadence, velocity) and static balance variables (COP path length, COP average velocity, and 95% confidence ellipse area) (p < .05). On the other hand, there was no significant correlation between pelvic inclination and gait or between the pelvic inclination and static balance variables. CONCLUSION: Significant correlations were observed between the gait function and static balance. On the other hand, there were no significant correlations between the pelvic inclination and gait and static balance. These results suggest that the pelvic inclination is not an important consideration for increasing the gait function and static balance.

수중 걷기 운동이 우측 편마비 환자의 발 운동학과 보행 속도에 미치는 영향 (The Effect of Aquatic Gait Training on Foot Kinesiology and Gait Speed in Right Hemiplegic Patients)

  • 이상열;형인혁;심제명
    • 한국콘텐츠학회논문지
    • /
    • 제9권12호
    • /
    • pp.674-682
    • /
    • 2009
  • 본 연구는 편마비 환자에게 수중 걷기 훈련이 미치는 영향에 대해 알아보고자 10주간 수중 걷기 훈련과 지상 걷기 훈련 후 족저압, 거골하관절의 움직임, 보향각, 보행 속도를 측정하였다. 대상자는 20명으로 수중걷기 훈련 그룹(n=10)이 엄지발가락 영역, 뒤꿈치영역, 발허리부분의 족저압이 유의하게 증가하였고, 거골하관절의 움직임과 보향각이 안정화되었으며, 보행 속도 또한 증가함을 보였다. 보행 속도의 증가와 거골하 관절의 움직임 안정화와 보향각의 감소는 수중 걷기가 편마비 환자의 보행 속도 뿐만아니라 보행의 안정화에도 영향을 미친다고 생각되어진다. 또한 엄지발가락 영역과 뒤꿈치 영역의 족저압 증가는 보행시 뒤꿈치 닿기와 발가락 밀기 동작의 회복으로 해석되어진다. 이와 같은 결과로 볼때, 현재 사용되고 있는 치료사에 의한 전문적인 물리치료를 받지 못하는 환자들의 경우 스스로 수중 걷기 훈련만으로도 지상 걷기에 비하여 많은 효과를 볼 수 있을 것으로 기대된다.

보행 장애인을 위한 능동형 보행훈련 시스템 개발 및 평가 (The Development and Evaluation of the Active Gait Training System for the Patients with Gait Disorder)

  • 황성재;태기식;강성재;김정윤;황선홍;김한일;박시운;김영호
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권2호
    • /
    • pp.218-228
    • /
    • 2007
  • Modem concepts of gait rehabilitation after stroke favor a task-specific repetitive approach. In practice, the required physical effort of the therapists limits the realization of this approach. Therefore, a mechanized gait trainer enabling nonambulatory patients to have the repetitive practice of a gait-like movement without overstraining therapists was constructed. In this study, we developed an active gait training system for patients with gait disorder. This system provides joint movements to patients who cannot carry out an independent gait. It provides a normal stance-swing ratio of 60:40 using an eccentric configuration of two gears. Joint motions of the knee and the ankle were evaluated with using the 3D motion analysis system and compared with the results from the multi-body dynamics simulation. In addition, clinical investigations were also performed for low stroke patients during the 6-week gait training. Results from the dynamics simulation showed that joint movements of the knee and the ankle were affected by the gear size, the step length and the length of the foot plate, except the radius of curvature of the foot guide plate. Also, the 6-week gait training revealed relevant improvements of the gait ability in all low subjects. Functional ambulation category levels of subjects after training were 2 in three patients and 1 in a patient. The developed active gait trainer seems feasible as an adjunctive tool in gait rehabilitation after stroke.

The effect of treadmill gait training with patellar taping on gait abilities in chronic stroke patients

  • Shin, Jin;Chung, Yijung
    • Physical Therapy Rehabilitation Science
    • /
    • 제4권2호
    • /
    • pp.94-102
    • /
    • 2015
  • Objective: The purpose of this study is to investigate the effect of treadmill gait training with patellar taping on gait abilities in chronic stroke patients. Design: Randomized controlled trial. Methods: Thirty chronic stroke patients who have been diagnosed at least six months or before were recruited in Gyeongin Rehabilitation Center Hospital, located in Incheon. Patients who were enrolled in this study were randomized to experimental group (n=15) or control group (n=15). Treadmill with patella taping training group patients were applied with patellar taping when they were being trained on a treadmill. Control group patients were being trained on a treadmill without any kind of taping. Gait parameters were measured with a GAITRite$^{(R)}$ system which evaluated gait performances. Gait trainings were done for 30 min/day, 5 days/week, for 4 weeks. Results: After treadmill training, treadmill with patella taping training group showed a significant improvement in gait abilities, including velocity, cadence, paretic and non-paretic step length, and double support period (p<0.05). However, in general treadmill group, there were no significant differences in gait parameters except velocity and cadence. There was a significant difference in gait performance in the experimental group compared with the control group, except for the gait symmetry ratio (p<0.05). Conclusions: According to this result of this study, it seems that application of patellar taping in treadmill gait training for chronic stroke patients significantly improved gait abilities of these patients. Also, we can conclude that patella taping is thought to be useful in real clinical settings where there are many chronic patients who are in need of improvement in their gait abilities.

Development of a Wearable Inertial Sensor-based Gait Analysis Device Using Machine Learning Algorithms -Validity of the Temporal Gait Parameter in Healthy Young Adults-

  • Seol, Pyong-Wha;Yoo, Heung-Jong;Choi, Yoon-Chul;Shin, Min-Yong;Choo, Kwang-Jae;Kim, Kyoung-Shin;Baek, Seung-Yoon;Lee, Yong-Woo;Song, Chang-Ho
    • PNF and Movement
    • /
    • 제18권2호
    • /
    • pp.287-296
    • /
    • 2020
  • Purpose: The study aims were to develop a wearable inertial sensor-based gait analysis device that uses machine learning algorithms, and to validate this novel device using temporal gait parameters. Methods: Thirty-four healthy young participants (22 male, 12 female, aged 25.76 years) with no musculoskeletal disorders were asked to walk at three different speeds. As they walked, data were simultaneously collected by a motion capture system and inertial measurement units (Reseed®). The data were sent to a machine learning algorithm adapted to the wearable inertial sensor-based gait analysis device. The validity of the newly developed instrument was assessed by comparing it to data from the motion capture system. Results: At normal speeds, intra-class correlation coefficients (ICC) for the temporal gait parameters were excellent (ICC [2, 1], 0.99~0.99), and coefficient of variation (CV) error values were insignificant for all gait parameters (0.31~1.08%). At slow speeds, ICCs for the temporal gait parameters were excellent (ICC [2, 1], 0.98~0.99), and CV error values were very small for all gait parameters (0.33~1.24%). At the fastest speeds, ICCs for temporal gait parameters were excellent (ICC [2, 1], 0.86~0.99) but less impressive than for the other speeds. CV error values were small for all gait parameters (0.17~5.58%). Conclusion: These results confirm that both the wearable inertial sensor-based gait analysis device and the machine learning algorithms have strong concurrent validity for temporal variables. On that basis, this novel wearable device is likely to prove useful for establishing temporal gait parameters while assessing gait.

Effect of gait training with additional weight on balance and gait in stroke patients

  • Shin, Seung Ho;Lee, Mi Young
    • Physical Therapy Rehabilitation Science
    • /
    • 제3권1호
    • /
    • pp.55-62
    • /
    • 2014
  • Objective: To study the effects of gait training with additional weight and gait training with non-additional weight on balance ability and gait ability in patients with chronic stroke through comparative analysis. Design: Randomized controlled trials. Methods: The subjects were divided randomly into two groups: additional weight group (AWG, n=12), and non-additional weight group (NAWG, n=10). Both groups received general physical therapy for 30 min in 1 session, 5 sessions per week during 6 months. The AWG practiced gait training with additional weight of 0.1 and 0.5 kg for 20 min a day, 3 days per week for 6 months and the NAWG practiced gait training with non-additional weight for 20 min a day, 3 days per week for 6 months. Patients in both groups were instructed to walk as fast as they could along a 35 m long track (straight for 20 m and curved for 15 m). Patients walked with their hemiplegic side on the inside of the track while a physical therapist followed along to instruct patients to maintain a straight posture. Balance ability was tested with the Functional Reach Test, the Timed Up and Go test, and the Berg Balance Scale, and gait ability was tested with GAITRite. The results of balance and gait ability were analyzed before and after interventions. Results: A significant increase in FRT, TUG, BBS was seen in both groups after intervention (p<0.05). A significant increase in gait ability was seen in the AWG after intervention (p<0.05). For balance and gait ability, the results from the AWG was significantly improved compared with the NAWG (p<0.05). Conclusions: Gait training with additional weight improves balance ability and gait ability in stroke patients, this gait training method is effective and suitable for stroke patients to increase the ability of functional performance.

노인에서 머리회전을 동반한 보행이 보행변수에 미치는 영향 (Effects of the Head-Turn Gait on Gait Parameters in the Elderly)

  • 이명희;장종성
    • PNF and Movement
    • /
    • 제19권3호
    • /
    • pp.435-440
    • /
    • 2021
  • Purpose: The purpose of this study is to investigate the effects of older adult's head-turn gait on gait parameters by comparing with head oriented forward gait and to provide criteria for their risk of falling compared to young adult. Methods: The subjects were 19 young adults in their 20s and 18 older adults in their 60s or above residing in Daegu or Gyeongsangbuk-do. To evaluate their gait parameters, spatiotemporal gait parameters were measured using a gait analysis tool (Legsys, BioSensics, USA) under two conditions: 1) walking while keeping one's eyes forward and 2) walking while turning the head. The measurement for each test was performed after one practice session, and the mean value of three measurements was analyzed. The collected data were statistically processed using a two-way analysis of variance (ANOVA) to compare any differences in gait parameters between the two groups under the two conditions. The statistical significance level was set at α=0.05. Results: According to the comparison of gait parameters in young adult and older adult between the head oriented forward gait and head-turn gait, statistically significant differences were observed in two parameters: stride length according to the height ratio and stride speed obtained by dividing the stride length according to the height ratio by time (p<0.05). Conclusion: The results of this study indicate that the head-turn gait causes greater differences in stride length and speed among older adult than in young adult and therefore can act as a cause of falling.

가상현실훈련과 로봇보행훈련이 만성 뇌졸중 환자의 균형과 보행능력에 미치는 영향 (Effects of Robot-Assisted, Gait-Training-Combined Virtual Reality Training on the Balance and Gait Ability of Chronic Stroke Patients)

  • 김동훈;김경훈
    • 대한물리의학회지
    • /
    • 제19권2호
    • /
    • pp.55-64
    • /
    • 2024
  • PURPOSE: This study evaluated the effects of robot-assisted gait training combined with virtual reality training on balance and gait ability in stroke patients. METHODS: Thirty-one stroke patients were allocated randomly into one of two groups: robot-assisted gait training combined virtual reality training group (RGVR group; n = 16) and control group (n = 15). The RGVR group received 30 minutes of robot-assisted gait training combined with virtual reality training. Robot-assisted gait training was conducted in parallel using a virtual reality device. In the Control group, neurodevelopmental therapy was performed according to the function of chronic stroke patients. Both groups underwent training for 30 minutes, three times per week for eight weeks. The balance assessment system (BioRescue, Marseille, France), BBS, and TUG were used to evaluate the balance ability. The OptoGait (Microgate Srl, Bolzano, Italy) and 10 mWT were measured to evaluate the gait ability. The measurements were performed before and after the eight-week intervention period. RESULTS: Both groups showed significant improvement in their balance and gait ability during the intervention. RGVR showed significant differences in balance and gait ability compared to the control group groups (p < .05). These results showed that RGVR was more effective on balance and gait ability in patients with chronic stroke. CONCLUSION: RGVR can improve balance and gait ability, highlighting the benefits of RGVR. This study provides intervention data for recovering the balance and gait ability of chronic stroke patients.

관절각과 지면반발력을 이용한 보행 단계의 분류: 역전파 신경망 적용 (Gait Phases Classification using Joint angle and Ground Reaction Force: Application of Backpropagation Neural Networks)

  • 채민기;정준영;박철제;장인훈;박현섭
    • 제어로봇시스템학회논문지
    • /
    • 제18권7호
    • /
    • pp.644-649
    • /
    • 2012
  • This paper proposes the gait phase classifier using backpropagation neural networks method which uses the angle of lower body's joints and ground reaction force as input signals. The classification of a gait phase is useful to understand the gait characteristics of pathologic gait and to control the gait rehabilitation systems. The classifier categorizes a gait cycle as 7 phases which are commonly used to classify the sub-phases of the gait in the literature. We verify the efficiency of the proposed method through experiments.