• Title/Summary/Keyword: Gae-song

Search Result 127, Processing Time 0.022 seconds

An Reliable Non-Volatile Memory using Alloy Nano-Dots Layer with Extremely High Density

  • Lee, Gae-Hun;Kil, Gyu-Hyun;An, Ho-Joong;Song, Yun-Heup
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.241-241
    • /
    • 2010
  • New non-volatile memory with high density and high work-function metal nano-dots, MND (Metal Nano-Dot) memory, was proposed and fundamental characteristics of MND capacitor were evaluated. In this work, nano-dot layer of FePt with high density and high work-function (~5.2eV) was fabricated as a charge storage site in non-volatile memory, and its electrical characteristics were evaluated for the possibility of non-volatile memory in view of cell operation by Fowler-Nordheim (FN)-tunneling. Here, nano-dot FePt layer was controlled as a uniform single layer with dot size of under ~ 2nm and dot density of ${\sim}\;1.2{\times}10^{13}/cm^2$. Electrical measurements of MOS structure with FePt nano-dot layer shows threshold voltage window of ~ 6V using FN programming and erasing, which is satisfied with operation of the non-volatile memory. Furthermore, this structure provides better data retention characteristics compared to other metal dot materials with the similar dot density in our experiments. From these results, it is expected that this non-volatile memory using FePt nano-dot layer with high dot density and high work-function can be one of candidate structures for the future non-volatile memory.

  • PDF

Cell Characteristics of a Multiple Alloy Nano-Dots Memory Structure

  • Kil, Gyu-Hyun;Lee, Gae-Hun;An, Ho-Joong;Song, Yun-Heup
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.240-240
    • /
    • 2010
  • A multiple alloy metal nano-dots memory using FN tunneling was investigated in order to confirm its structural possibility for future flash memory. In this work, a multiple FePt nano-dots device with a high work function (~5.2 eV) and extremely high dot density (${\sim}\;1.2{\times}10^{13}/cm^2$) was fabricated. Its structural effect for multiple layers was evaluated and compared to one with a single layer in terms of the cell characteristics and reliability. We confirm that MOS capacitor structures with 2-4 multiple FePt nano-dot layers provide a larger threshold voltage window and better retention characteristics. Furthermore, it was also revealed that several process parameters for block oxide and inter-tunnel oxide between the nano-dot layers are very important to improve the efficiency of electron injection into multiple nano-dots. From these results, it is expected that a multiple FePt nano-dots memory using Fowler-Nordheim (FN)-tunneling could be a candidate structure for future flash memory.

  • PDF

Stability analysis on the concrete slab of the highest concrete-faced rock-fill dam in South Korea

  • Baak, Seung-Hyung;Cho, Gye-Chun;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.881-892
    • /
    • 2017
  • Design and management of concrete slabs in concrete-faced rock-fill dams are crucial issues for stability and overall dam safety since cracks in the concrete face induced by stress, shrinkage, and deterioration can cause severe leakage from the reservoir into the dam. Especially, the increase of dam height to a certain level to enhance the storage capacity and to improve hydraulic stability can lead to undesirable deformation behavior and stress distribution in the existing dam body and in the concrete slabs. In such conditions, simulation of a concrete slab with a numerical method should involve the use of an interface element because the behavior of the concrete slab does not follow the behavior of the dam body when the dam body settles due to the increase of dam height. However, the interfacial properties between the dam body and the concrete slab have yet to be clearly defined. In this study, construction sequence of a 125 m high CFRD in South Korea is simulated with commercial FDM software. The proper interfacial properties of the concrete slab are estimated based on a comparison to monitored vertical displacement history obtained from the concrete slab. Possibility of shear strength failure under the critical condition is investigated based on the simplified model. Results present the significance of the interfacial properties of the concrete slab.

Estimation of rock tensile and compressive moduli with Brazilian disc test

  • Wei, Jiong;Niu, Leilei;Song, Jae-Joon;Xie, Linmao
    • Geomechanics and Engineering
    • /
    • v.19 no.4
    • /
    • pp.353-360
    • /
    • 2019
  • The elastic modulus is an important parameter to characterize the property of rock. It is common knowledge that the strengths of rocks are significantly different under tension and compression. However, little attention has been paid to the bi-modularity of rock. To validate whether the rock elastic moduli in tension and compression are the same, Brazilian disc, direct tension and compression tests were conducted. A horizontal laser displacement meter and a pair of vertical and transverse strain gauges were applied. Four types of materials were tested, including three types of rock materials and one type of steel material. A comprehensive comparison of the elastic moduli based on different experimental results was presented, and a tension-compression anisotropy model was proposed to explain the experimental results. The results from this study indicate that the rock elastic modulus is different under tension and compression. The ratio of the rock elastic moduli under compression and tension ranges from 2 to 4. The rock tensile moduli from the strain data and displacement data are approximate. The elastic moduli from the Brazilian disc test are consistent with those from the uniaxial tension and compression tests. The Brazilian disc test is a convenient method for estimating the tensile and compressive moduli of rock materials.

The topographic effect of ground motion based on Spectral Element Method

  • Liu, Xinrong;Jin, Meihai;Li, Dongliang;Hu, Yuanxin;Song, Jianxue
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.411-429
    • /
    • 2017
  • A Spectral Element Method for 3D seismic wave propagation simulation is derived based on the three-dimensional fluctuating elastic dynamic equation. Considering the 3D real terrain and the attenuation characteristics of the medium, the topographic effect of Wenchuan earthquake is simulated by using the Spectral Element Method (SEM) algorithm and the ASTER DEM model. Results show that the high PGA (peak ground acceleration) region was distributed along the peak and the slope side away from the epicenter in the epicenter area. The overall distribution direction of high PGA and high PGV (peak ground velocity) region is parallel to the direction of the seismogenic fault. In the epicenter of the earthquake, the ground motion is to some extent amplified under the influence of the terrain. The amplification effect of the terrain on PGA is complicated. It does not exactly lead to amplification of PGA at the ridge and the summit or attenuation of PGA in the valley.

Experimental research on dynamic response of red sandstone soil under impact loads

  • Wang, Tong;Song, Zhanping;Yang, Jianyong;Wang, Junbao;Zhang, Xuegang
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.393-403
    • /
    • 2019
  • The cycling impact test of red sandstone soil under different axial pressure and different impact loads are conducted to reveal the mechanical properties and energy consumption mechanism of red sandstone soil with static-dynamic coupling loading. The results show that: Under the action of different axial pressure and different impact loads, the peak stress of the specimen increases, and then tends to be stable with the times of impact. With the increase of impact times, the specific energy absorption value of the red sandstone soil specimen is increased first and then gentle development trend. When the impact loads are certain, the larger the axial pressure is, the smaller the peak value of energy absorption, which indicates that the energy utilization rate is not high under the condition of large axial pressure. Through the analysis of energy utilization, it is found that the smaller the impact load, the higher the energy utilization rate. The greater the axial pressure, the lower the energy utilization rate. when the axial pressure is large, the impact loads corresponding to the maximum values of reflectivity, transmissivity and absorptivity are the same. The relationship between reflectivity and transmissivity is negatively correlated.

Numerical analysis of offshore monopile during repetitive lateral loading

  • Chong, Song-Hun;Shin, Ho-Sung;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.79-91
    • /
    • 2019
  • Renewed interest in the long-term pile foundations has been driven by the increase in offshore wind turbine installation to generate renewable energy. A monopile subjected to repetitive loads experiences an evolution of displacements, pile rotation, and stress redistribution along the embedded portion of the pile. However, it is not fully understood how the embedded pile interacts with the surrounding soil elements based on different pile geometries. This study investigates the long-term soil response around offshore monopiles using finite element method. The semi-empirical numerical approach is adopted to account for the fundamental features of volumetric strain (terminal void ratio) and shear strain (shakedown and ratcheting), the strain accumulation rate, and stress obliquity. The model is tested with different strain boundary conditions and stress obliquity by relaxing four model parameters. The parametric study includes pile diameter, embedded length, and moment arm distance from the surface. Numerical results indicate that different pile geometries produce a distinct evolution of lateral displacement and stress. In particular, the repetitive lateral load increases the global lateral load resistance. Further analysis provides insight into the propagation of the shear localization from the pile tip to the ground surface.

Three-dimensional numerical modelling of geocell reinforced soils and its practical application

  • Song, Fei;Tian, Yinghui
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • This paper proposes a new numerical approach to model geocell reinforced soils, where the geocell is described as membrane elements and the complex interaction between geocell and soil is realized by coupling their degrees of freedom. The effectiveness and robustness of this approach are demonstrated using two examples, i.e., a geocell-reinforced foundation and a large scale retaining wall project. The first example validates the approach against established solutions through a comprehensive parametrical study to understand the influence of geocell on the improvement of bearing capacity of foundations. The study results show that reducing the geocell pocket size has a strong effect on improving the bearing capacity. In addition, when the aspect ratio maintains the same value, the bearing capacity improvement with increasing geocell height is insignificant. Comparing with the field monitoring and measurement in the project, the second example investigates the application of the approach to practical engineering projects. This paper provides a practically feasible and efficient modelling approach, where no explicit interface or contact is required. This allows geocell reinforced soils in large scale project can be effectively modelled where the mechanism for complex geocell-soil interaction can be explicitly observed.

Study on the mechanical properties and rheological model of an anchored rock mass under creep-fatigue loading

  • Song, Yang;Li, Yong qi
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.535-546
    • /
    • 2020
  • The stress environment of deep rock masses is complex. Under the action of earthquakes or blasting, the strength and stability of anchored rock masses in fracture zones or faults are affected. To explore the variation in anchored rock masses under creep-fatigue loading, shear creep comparative testing of anchored marble specimens with or without fatigue loading is performed. Considering the damage variable of rock under fatigue loading, a rheological model is established to characterize the whole shear creep process of anchored rock masses under creep-fatigue loading. The results show that (1) the overall deformation of marble under creep-fatigue loading is larger than that under only shear creep loading, and the average deformation is increased by 18.3%. (2) By comparing the creep curves with and without fatigue loading, the two curves basically coincide when the first level stress is applied, and the two curves are stable with the increase in stress level. The results show that the strain difference among the specimens increases gradually in the steady-state stage and reaches the maximum at the fourth level. (3) The shear creep is described by considering the creep mechanical properties of anchored rock masses under fatigue loading. The accuracy of this creep-fatigue model is verified by laboratory tests, and the applicability of the model is illustrated by the fitting parameter R2. The proposed model provides a theoretical basis for the study of anchored rock masses under low-frequency earthquakes or blasting and new methods for the stability and reinforcement of rock masses.

Weathering durability of biopolymerized shales and glacial tills

  • Amelian, Soroosh;Song, Chung R.;Kim, Yongrak;Lindemann, Mark;Bitar, Layal
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.375-384
    • /
    • 2022
  • The glacial tills and shales in Midwestern states of the USA often show strength degradation after construction. They are often in need of applying soil modification techniques to remediate their strength degradation with weathering process. This study investigated the weathering durability of these natural soils and biopolymer treated soils by comparing direct shear test results for wet-dry and wet-freeze-thaw-dry cycled specimens. The tests showed that untreated glacial tills maintained only 62% and 50% initial shear strength after eight wet-dry cycles and eight wet-freeze-thaw-dry cycles, respectively. These untreated soils could not withstand by themselves after 16 weathering cycles. The same soils treated with 1.5% (by dry weight) food-grade Xanthan gum maintained 140% and 88% initial shear strength of untreated soils after 16 weathering cycles for wet-dry cycles and wet-freeze-thaw-dry cycles, respectively. The same soils treated with 1.5% (by dry weight) Gellan gum maintained 82% and 60% initial shear strength of untreated ones after 16 weathering cycles, respectively. Similar results were obtained for crushed shales, manifesting that the biopolymerization method may be adopted as a new eco-friendly method to enhance the weathering durability of these problematic soils of glacial tills and shales.