• 제목/요약/키워드: Gadolinia doped ceria

검색결과 14건 처리시간 0.023초

Effect of Sintering Process with Co3O4 on the Performance of LSCF-Based Cathodes for Solid Oxide Fuel Cells

  • Khurana, Sanchit;Johnson, Sean;Karimaghaloo, Alireza;Lee, Min Hwan
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • 제5권5호
    • /
    • pp.637-642
    • /
    • 2018
  • The impact of the sintering process, especially in terms of sintering temperature and sintering aid concentration, on the ohmic transport and electrode performance of $(La_{0.80}Sr_{0.20})_{0.95}CoO_{3-{\delta}}$-gadolinia-doped ceria (LSCF-GDC) cathodes is studied. The ohmic and charge-transfer kinetics exhibit a highly coupled $Co_3O_4$ concentration dependency, showing the best performances at an optimum range of 4-5 wt%. This is ascribed to small grain sizes and improved connection between particles. The addition of $Co_3O_4$ was also found to have a dominant impact on charge-transfer kinetics in the LSCF-GDC composite layer and a moderate impact on the electronic transport in the current-collecting LSCF layer. Care should be taken to avoid a formation of excessive thermal stresses between layers when adding $Co_3O_4$.

Strontium Gallate의 첨가에 따른 Ce0.8Gd0.2O2-δ 세라믹스의 소결거동과 전기전도도 특성 (Effects of Strontium Gallate Additions on Sintering Behavior and Electrical Conductivity of Ce0.8Gd0.2O2-δ Ceramics)

  • 박진희;최광훈;류봉기;이주신
    • 한국전기전자재료학회논문지
    • /
    • 제19권2호
    • /
    • pp.145-152
    • /
    • 2006
  • The densification behavior and electrical conductivity of $Ce_{0.8}Gd_{0.2}O_{1.9}$ ceramics were investigated with the strontium gallate concentration ranging from 0 to $5\;mol\%$. Both the sintered density and grain size were found to increase rapidly up to $0.5\;mol\%$ $Sr_2Ga_2O_5$, and then to decrease with further addition. Dense $Ce_{0.8}Gd_{0.2}O_{1.9}$ ceramics with $97\%$ of the theoretical density could be obtained for $0.5\;mol\%$ $Sr_2Ga_2O_5$-added specimen sintered at $1250^{\circ}C$ for 5 h, whereas pure $Ce_{0.8}Gd_{0.2}O_{1.9}$ ceramics needed to be sintered at $1550^{\circ}C$ in order to obtain an equivalent theoretical density, Electrical conductivity was measured as a function of dopant content, over the temperature range of $350\;-\;600^{\circ}C$ in air. Total conductivity of $0.5\;mol\%$ $Sr_2Ga_2O_5$-added specimen showed the maximum conductivity of $2.37{\times}10^{-2}{{\Omega}-1}{\cdot}cm^{-1}$ at $500^{\circ}C$, The addition of strontium gallate was found to promote the sintering properties and electrical conductivities of $Gd_2O_3$-doped $CeO_2$.

하이드라진을 이용한 용액환원법에 의한 Ni-GDC 미분말 합성과 전기적 특성 (Preparation of Ni-GDC Powders by the Solution Reduction Method Using Hydrazine and Its Electrical Properties)

  • 김선중;김강민;조평석;조윤호;이충용;박승영;강윤찬;이종흔
    • 한국재료학회지
    • /
    • 제18권12호
    • /
    • pp.660-663
    • /
    • 2008
  • Ni-GDC (gadolinia-doped ceria) composite powders, the anode material for the application of solid oxide fuel cells, were prepared by a solution reduction method using hydrazine. The distribution of Ni particles in the composite powders was homogeneous. The Ni-GDC powders were sintered at $1400^{\circ}C$ for 2 h and then reduced at $800^{\circ}C$ for 24 h in 3% $H_2$. The percolation limit of Ni of the sintered composite was 20 vol%, which was significantly lower than these values in the literature (30-35 vol%). The marked decrease of percolation limit is attributed to the small size of the Ni particles and the high degree of dispersion. The hydrazine method suggests a facile chemical route to prepare well-dispersed Ni-GDC composite powders.

Thin Film (La0.7Sr0.3)0.95MnO3-δ Fabricated by Pulsed Laser Deposition and Its Application as a Solid Oxide Fuel Cell Cathode for Low-Temperature Operation

  • Noh, Ho-Sung;Son, Ji-Won;Lee, Heon;Kim, Hae-Ryoung;Lee, Jong-Ho;Lee, Hae-Weon
    • 한국세라믹학회지
    • /
    • 제47권1호
    • /
    • pp.75-81
    • /
    • 2010
  • The feasibility of using the thin film technology in utilizing lanthanum strontium manganite (LSM) for a solid oxide fuel cell (SOFC) cathode in a low-temperature regime is investigated in this study. Thin film LSM cathodes were fabricated using pulsed laser deposition (PLD) on anode-supported SOFCs with yttria-stabilized zirconia (YSZ) electrolytes. Although cells with a 1 ${\mu}m$-thick LSM cathode showed poor low-temperature cell performance compared to that of a cell with a bulk-processed cathode due to the lack of a triple-phase boundary length, the cell with 200 nm-thick gadolinia-doped ceria (GDC) inserted between the LSM and YSZ showed enhanced performance and more stable operation characteristics in a comparison of a cell without a GDC layer. We postulate that the GDC layer likely improved the cathode adhesion, therefore contributing to the improvement of the cell performance instead of serving as an interfacial reaction buffer.