• Title/Summary/Keyword: GaAs Monolithic Microwave Integrated Circuit(MMIC)

Search Result 45, Processing Time 0.024 seconds

A Low Loss and Short-wavelength Transmission Line Employing Inverted Periodically Arrayed Capacitive Devices and Its Application to Miniaturized Passive Components on MMIC (저손실·단파장 특성을 가지는 반전된 형태의 주기적 용량성 선로구조와 MMIC상의 초소형 수동소자 개발에의 응용)

  • Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.149-156
    • /
    • 2012
  • In this study, we propose a novel transmission line employing inverted PACD (Periodically Arrayed Capacitive Devices) for application to a development of miniaturized passive components on MMIC. The novel microstrip line employing Inverted PACD structure showed a loss much lower than conventional microstrip line. Using the inverted PACD structure, we fabricated a miniaturized impedance transformer on MMIC. the size of the impedance transformer was 0.012 $mm^2$, which is only 1.7% of conventional one. The impedance transformer showed good RF performances in a frequency range of 2.25~6.5 GHz.

Development of Large Signal Model Extractor and Small Signal Model Verification for GaAs FET Devices (GaAs FET소자 모델링을 위한 소신호 모델의 검증과 대신호 모델 추출기 개발)

  • 최형규;전계익;김병성;이종철;이병제;김종헌;김남영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.787-794
    • /
    • 2001
  • In this paper, the development of large-signal model extractor for GaAs FET device through the Monolithic Microwave integrated Circuit(MMIC) is presented. The measurement program controlled by personal computer is developed for the processing of an amount of measured data, and the de-embedding algorithm is added to the program for voltage dropping as attached series resistance on measurement system. The small-signal model parameters are typically consisted of 7 elements that are considered as complexity of large-signal model and its the accuracy of the small-signal model is verified through comparing with measured data as varied bias point. The fitting function model, one of the empirical model, is used for quick simulation. In the process of large-signal model parameter extraction, one-dimensional optimization method is proposed and optimized parameters are extracted. This study can reduce the modeling and measuring time and can secure a suitable model for circuit.

  • PDF

Differential LC VCO with Enhanced Tank Structure and LC Filtering Techniques in InGaP/GaAs HBT Technology (InGaP/GaAs HBT 공정을 이용하여 향상된 탱크 구조와 LC 필터링 기술을 적용한 차동 LC 전압 제어 발진기 설계)

  • Lee, Sang-Yeol;Kim, Nam-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.2 s.117
    • /
    • pp.177-182
    • /
    • 2007
  • This paper presents the InGaP/GaAs HBT differential LC VCO with low phase noise performance for adaptive feedback interference cancellation system(AF-lCS). The VCO is verified with enhanced tank structure including filtering technique. The output tuning range for proposed VCO using asymmetric inductor and symmetric capacitors withlow pass filtering technique is 207 MHz. The output powers are -6.68 including balun and cable loss. The phase noise of this VCO at 10 kHz, 100 kHz and 1 MHz are -102.02 dBc/Hz, -112.04 dBc/Hz and -130.40 dBc/Hz. The VCO is designed within total size of $0.9{\times}0.9mm^2$.

An MMIC Doubly Balanced Resistive Mixer with a Compact IF Balun (소형 IF 발룬이 내장된 MMIC 이중 평형 저항성 혼합기)

  • Jeong, Jin-Cheol;Yom, In-Bok;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1350-1359
    • /
    • 2008
  • This paper presents a wideband doubly balanced resistive mixer fabricated using $0.5{\mu}m$ GaAs p-HEMT process. Three baluns are employed in the mixer. LO and RF baluns operating over an 8 to 20 GHz range were implemented with Marchand baluns. In order to reduce chip size, the Marchand baluns were realized by the meandering multicoupled line and inductor lines were inserted to compensate for the meandering effect. IF balun was implemented through a DC-coupled differential amplifier. The size of IF balun is $0.3{\times}0.5\;mm^2$ and the measured amplitude and phase unbalances were less than 1 dB and $5^{\circ}$, respectively from DC to 7 GHz. The mixer is $1.7{\times}1.8\;mm^2$ in size, has a conversion loss of 5 to 11 dB, and an output third order intercept(OIP3) of +10 to +15 dBm at 16 dBm LO power for the operating bandwidth.

Design of 77 GHz Automotive Radar System (77 GHz 차량용 레이더 시스템 설계)

  • Nam, Hyeong-Ki;Kang, Hyun-Sang;Song, Ui-Jong;Cui, Chenglin;Kim, Seong-Kyun;Nam, Sang-Wook;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.9
    • /
    • pp.936-943
    • /
    • 2013
  • This work presents the design and measured results of the single channel automotive radar system for 76.5~77 GHz long range FMCW radar applications. The transmitter uses a commercial GaAs monolithic microwave integrated circuit(MMIC) and the receiver uses the down converter designed using 65 nm CMOS process. The output power of the transmitter is 10 dBm. The down converter chip can operate at low LO power as -8 dBm which is easily supplied from the transmitter output using a coupled line coupler. All MMICs are mounted on an aluminum jig which embeds the WR-10 waveguide. A microstrip to waveguide transition is designed to feed the embedded waveguide and finally high gain horn antennas. The overall size of the fabricated radar system is $80mm{\times}61mm{\times}21mm$. The radar system achieved an output power of 10 dBm, phase noise of -94 dBc/Hz at 1 MHz offset and a conversion gain of 12 dB.