• Title/Summary/Keyword: GaAs 3J Cell

Search Result 18, Processing Time 0.023 seconds

fects of Cuscuta Chinensis Lamark Ethanol Extract on Wrinkle Improvement Bio-markers by UVB-induced CCD-986Sk Cell (토사자 에탄올 추출물이 UVB로 유도된 CCD-986Sk cell에서 주름개선 생리지표에 미치는 영향)

  • Joo, In Hwan;Choi, Hak Joo;Sim, Boo Yong;Min, Ga Yul;Kim, Dong Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.32 no.5
    • /
    • pp.321-327
    • /
    • 2018
  • The purpose of this study was to investigate the effects of Cuscuta chinensis Lamark ethanol extract (CL) on wrinkle improvement. Cuscuta chinensis Lamark is known to contain dried saccharide, alkaloids, flavonoids, lignans and rein glycoside as major components of dried mature seeds of Cuscuta japonica Choisy. In this study, we evaluated the anti-wrinkle effects of CL and investigated bio-markers (e.g ; MMP-1, MMP-3, MMP-9, TIMP-1, type I procollagen) associated with skin wrinkle improvement. We tested the anti-wrinkle effect of CL using human fibroblast called CCD-986Sk cell. We observed an increase in MMPs, TIMP-1, and type 1 pro-collagen CL in CCD-986Sk cells irradiated with UVB at an intensity of $2mJ/cm^2$ for 60 seconds. As a result, CL decreased UVB-induced MMPs levels and mRNA expressions in CCD-986Sk cell. The levels and mRNA expressions of type I procollagen and TIMP-1 were increased by CL. These results suggest that CL has activities on improvement of skin wrinkle, which is induced by UVB radiation. Taken together, this study proposed the possibility of developing herbal medicine and functional herbal cosmetic materials with wrinkle-improving effects of Cuscuta chinensis Lamark.

Effect of low-level laser therapy on bisphosphonate-treated osteoblasts

  • Shin, Sang-Hun;Kim, Ki-Hyun;Choi, Na-Rae;Kim, In-Ryoung;Park, Bong-Soo;Kim, Yong-Deok;Kim, Uk-Kyu;Kim, Cheol-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.48.1-48.8
    • /
    • 2016
  • Background: This study investigates the effect of alendronate-treated osteoblasts, as well as the effect of low-level laser therapy (LLLT) on the alendronate-treated osteoblasts. Bisphosphonate decreases the osteoblastic activity. Various treatment modalities are used to enhance the bisphosphonate-treated osteoblasts; however, there were no cell culture studies conducted using a low-level laser. Methods: Human fetal osteoblastic (hFOB 1.19) cells were treated with $50{\mu}M$ alendronate. Then, they were irradiated with a $1.2J/cm^2$ low-level Ga-Al-As laser (${\lambda}=808{\pm}3nm$, 80 mW, and 80 mA; spot size, $1 cm^2$; NDLux, Seoul, Korea). The cell survivability was measured with the MTT assay. The three cytokines of osteoblasts, receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL), osteoprotegerin (OPG), and macrophage colony-stimulating factor (M-CSF) were analyzed. Results: In the cells treated with alendronate at concentrations of $50{\mu}M$ and higher, cell survivability significantly decreased after 48 h (p < 0.05). After the applications of low-level laser on alendronate-treated cells, cell survivability significantly increased at 72 h (p < 0.05). The expressions of OPG, RANKL, and M-CSF have decreased via the alendronate. The RANKL and M-CSF expressions have increased, but the OPG was not significantly affected by the LLLT. Conclusions: The LLLT does not affect the OPG expression in the hFOB cell line, but it may increase the RANKL and M-CSF expressions, thereby resulting in positive effects on osteoclastogenesis and bone remodeling.

Sputtered Al-Doped ZnO Layers for Cu2ZnSnS4 Thin Film Solar Cells

  • Lee, Kee Doo;Oh, Lee Seul;Seo, Se-Won;Kim, Dong Hwan;Kim, Jin Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.688-688
    • /
    • 2013
  • Al-doped ZnO (AZO) thin films have attracted a lot of attention as a cheap transparent conducting oxide (TCO) material that can replace the expensive Sn-doped In2O3. In particular, AZO thin films are widely used as a window layer of chalcogenide-based thin film solar cells such as Cu(In,Ga)Se2 and Cu2ZnSnS4 (CZTS). Mostly important requirements for the window layer material of the thin film solar cells are the high transparency and the low sheet resistance, because they influence the light absorption by the activelayer and the electron collection from the active layer, respectively. In this study, we prepared the AZO thin films by RF magnetron sputtering using a ZnO/Al2O3 (98:2wt%) ceramic target, and the effect of the sputtering condition such as the working pressure, RF power, and the working distance on the optical, electrical, and crystallographic properties of the AZO thin films was investigated. The AZO thin films with optimized properties were used as a window layer of CZTS thin film solar cells. The CZTS active layers were prepared by the electrochemical deposition and the subsequent sulfurization process, which is also one of the cost-effective synthetic approaches. In addition, the solar cell properties of the CZTS thin film solar cells, such as the photocurrent density-voltage (J-V) characteristics and the external quantum efficiency (EQE) were investigated.

  • PDF

Electrochemical oxidation of sodium dodecylbenzenesulfonate in Pt anodes with Y2O3 particles

  • Jung-Hoon Choi;Byeonggwan Lee;Ki-Rak Lee;Hyun Woo Kang;Hyeon Jin Eom;Seong-Sik Shin;Ga-Yeong Kim;Geun-Il Park;Hwan-Seo Park
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4441-4448
    • /
    • 2022
  • The electrochemical oxidation process has been widely studied in the field of wastewater treatment for the decomposition of organic materials through oxidation using ·OH generated on the anode. Pt anode electrodes with high durability and long-term operability have a low oxygen evolution potential, making them unsuitable for electrochemical oxidation processes. Therefore, to apply Pt electrodes that are suitable for long-term operation and large-scale processes, it is necessary to develop a new method for improving the decomposition rate of organic materials. This study introduces a method to improve the decomposition rate of organic materials when using a Pt anode electrode in the electrochemical oxidation process for the treatment of organic decontamination liquid waste. Electrochemical decomposition tests were performed using sodium dodecylbenzenesulfonate (SDBS) as a representative organic material and a Pt mesh as the anode electrode. Y2O3 particles were introduced into the electrolytic cell to improve the decomposition rate. The decomposition rate significantly improved from 21% to 99%, and the current efficiency also improved. These results can be applied to the electrochemical oxidation process without additional system modification to enhance the decomposition rate and current efficiency.

Effects of Low-Level Laser Irradiation on the ALP Activity and Calcified Module Formation of Rat Osteoblastic Cell (저수준레이저(GaAs 반도체)조사가 골모세포의 알칼리성 인산분해효소의 활성과 석회화결절의 형성에 미치는 영향)

  • Kyung-Hun Lee;Ki-Suk Kim
    • Journal of Oral Medicine and Pain
    • /
    • v.21 no.2
    • /
    • pp.279-291
    • /
    • 1996
  • 저수준레에저요법에 대해서는 지난 10여년간 의학계 및 치과계에서 임상적으로 사용하여 좋은 결과가 있다고 많은 보고가 발표되고 있다. 특히 치근의 골결손에 관한 연구에서는 전기요법, 초음파요법, 전자장요법 등 뿐만아니라 저수준레이저를 사용하여 골절부내 Callus형성이 촉진되었음을 보고하고 새로운 치료법의 하나가 될 수 있음을 제안한 바도 있다. 본 연구에서는 칼륨비소를 다이오드로 사용한 저수준레이저조사가 골결손의 치유에 어떠한 영향을 미치는지 확인하고자 골모세포의 알칼리성 인산분해효소의 활성화와 석회화결절의 형성을 평가함으로 골모세포의 기능을 조사코저하였다. 실험은 첫째, 9개군으로 나누어 레이저 조사기간에 따른 알칼리성 인산분해효소의 활성화를 조사하였고, 둘째, 이를 근거로 9일간 계속 매일 1회 1.3 J/cm2의 레이저를 조사한 후 펄스의 종류별 차이를 비교하였으며, 세째,레이저펄스별 석회차 결절의 형성 정도를 광학현미경으로 관찰하여 비교분석하였다. 결과, 7일 계속 레이저를 조사한 경우 다른 군에 비해 서서히 ALP의 활성이 증가하였으나 유의한 차이는 없었으며. 따라서 9일동안 레이저를 계속 조사한 경우에는 전체 에너지량이 5.895 J/cm2 인 펄스13과 15가 뚜렷하게 유의한 증가를 보여주었다. 그러나 석회화결절의 형성은 전체 에너지량이 2.546 J/cm2 인 펄스11에서 가장 많았다. 결론적으로 골형성이나 알칼리성 인산분해효소의 활성을 촉진하는 데에는 적절한 레이저 조사조건이 필요하나, 알칼리성 인산분해효소의 활성을 촉진한 펄스와 석회화결절의 형성을 촉진하는 펄스가 서로 다르게 나타난 것은 골형성을 촉진하는 여러요인 들이 저수준레이저에 자극받았을 가능성이 높음을 보여준다 이러한 결과들로 보아 저수준레이저는 골모세포의 기능을 자극하여 골결손의 치유를 개선하는 데 도움될 것이라 사료된다.다. 각 백서의 양측 창상중 하나는 1,3,5,7일 마다 각 실험의 방법에 따라 레이저를 조사하고 실험동물의 다른 창상은 대조군으로서 사용하였다. 모든 창상의 면적은 실험 1,3,5,7 일째에 일정한 거리에서 사진촬영하여 면적계를 이용, 측정한 후 통계적인 의의를 조사하였다. 본 연구의 결과는 저수준레이저는 특정 조건하에서 S. aureus의 증식을 촉진하였다. 그러나 S. aureus에 감염된 창상을 저수준레이저로 조사시 치유가 촉진되었다. 중앙 조사법고 주변조사법에 의한 창상치유효과는 통계적인 의의가 보이지 않았다. 따라서 결론적으로 S. aureus 에 감염된 창상에 직접 또는 간접적이든 pulse의 종류에 관계없이 조사하는 경우 치유효과가 나타나는 것은 정사주위 조직의 LLLI 자극효과가 염증의 확산을 억제한다고 말할수 있다.4/1$0^{\circ}C$에서는 Shoa-Nan-Tsan과 Lenkwang이 가장 높았으며 백앙벼는 3 온도 조건 모두에서 활성이 낮았다. 발아소요일수와 amylase 활성과는 유의적인 정의 상관관계를 보였다., 다다조, 미국의 건답직파재배 품종 등이었으며 우리 나라 육성종들은 모두 지중에서 신장이 멈추어 제1본엽이 지중에서 추출하였으며, Scm파종심에서 불완전엽이 지면을 뚫고 나오는 품종은 Chinsura Boro뿐이었고 Nato, Labelle, Weld Pally, Italliconaverneco 등도 지면 가까이 까지 신장하였다. 6. 50% 출아일수는 제2절간장을 제외 한 모든 유아 형질의 신장도와 유의한 부의 상관을 보였는데 가장 높은 상관을 보인 것은 중배축장+제1절간장+불완전옆장이었으며, 다음이 불완전엽장이 었다. 7. 출아율은 중배축장+제1절간장+불완전엽장, 중배축장+초엽 장과 모든 파종심에서 높은 정의 상관을 보여 제1본엽의 추출 위치가 높을수록

  • PDF

Ginsenoside Rb1 and Rb2 upregulate Akt/mTOR signaling-mediated muscular hypertrophy and myoblast differentiation

  • Go, Ga-Yeon;Jo, Ayoung;Seo, Dong-Wan;Kim, Woo-Young;Kim, Yong Kee;So, Eui-Young;Chen, Qian;Kang, Jong-Sun;Bae, Gyu-Un;Lee, Sang-Jin
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.435-441
    • /
    • 2020
  • Background: As a process of aging, skeletal muscle mass and function gradually decrease. It is reported that ginsenoside Rb1 and Rb2 play a role as AMP-activated protein kinase activator, resulting in regulating glucose homeostasis, and Rb1 reduces oxidative stress in aged skeletal muscles through activating the phosphatidylinositol 3-kinase/Akt/Nrf2 pathway. We examined the effects of Rb1 and Rb2 on differentiation of the muscle stem cells and myotube formation. Methods: C2C12 myoblasts treated with Rb1 and/or Rb2 were differentiated and induced to myotube formation, followed by immunoblotting for myogenic marker proteins, such as myosin heavy chain, MyoD, and myogenin, or immunostaining for myosin heavy chain or immunoprecipitation analysis for heterodimerization of MyoD/E-proteins. Results: Rb1 and Rb2 enhanced myoblast differentiation through accelerating MyoD/E-protein heterodimerization and increased myotube hypertrophy, accompanied by activation of Akt/mammalian target of rapamycin signaling. In addition, Rb1 and Rb2 induced the MyoD-mediated transdifferentiation of the rhabdomyosarcoma cells into myoblasts. Furthermore, co-treatment with Rb1 and Rb2 had synergistically enhanced myoblast differentiation through Akt activation. Conclusion: Rb1 and Rb2 upregulate myotube growth and myogenic differentiation through activating Akt/mammalian target of rapamycin signaling and inducing myogenic conversion of fibroblasts. Thus, our first finding indicates that Rb1 and Rb2 have strong potential as a helpful remedy to prevent and treat muscle atrophy, such as age-related muscular dystrophy.

Effects of an in vitro vitamin D treatment on the inflammatory responses in visceral adipose tissue from Ldlr-/- mice

  • Deok Hoon Kwon;Jungwon Hwang;Hyeyoung You;Na Young Kim;Ga Young Lee;Sung Nim Han
    • Nutrition Research and Practice
    • /
    • v.18 no.1
    • /
    • pp.19-32
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Atherosclerosis is associated with increased inflammation in the visceral adipose tissue (VAT). Vitamin D has been reported to modulate the inflammatory responses of stromal vascular cells (SVCs) and adipocytes in adipose tissue, but the role of vitamin D in atherosclerosis biology is unclear. This study examined the effects of in vitro 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) treatment on the inflammatory responses of SVCs and adipocytes from atherosclerotic mice. MATERIALS/METHODS: C57BL/6J (B6) mice were divided randomly into 2 groups and fed a 10% kcal fat control diet (control group, CON) or 41% kcal fat, 0.21% cholesterol (high fat + cholesterol, HFC) diet (obese group, OB), and B6.129S7-Ldlrtm1Her/J (Ldlr-/-) mice were fed a HFC diet (obese with atherosclerosis group, OBA) for 16 weeks. SVCs and adipocytes isolated from VAT were pre-incubated with 1,25(OH)2D3 for 24 h and stimulated with lipopolysaccarides for the next 24 h. Proinflammatory cytokine production by adipocytes and SVCs, the immune cell population in SVCs, and the expression of the genes involved in the inflammatory signaling pathway in SVCs were determined. RESULTS: The numbers of total macrophages and SVCs per mouse were higher in OB and OBA groups than the CON group. The in vitro 1,25(OH)2D3 treatment significantly reduced macrophages/SVCs (%) in the OBA group. Consistent with this change, the production of interleukin-6 and monocyte chemoattractant protein 1 (MCP-1) by SVCs from the OBA group was decreased by 1,25(OH)2D3 treatment. The 1,25(OH)2D3 treatment significantly reduced the toll-like receptor 4 and dual-specificity protein phosphatase 1 (also known as mitogen-activated protein kinase phosphatase 1) mRNA levels in SVCs and MCP-1 production by adipocytes from all 3 groups. CONCLUSIONS: These findings suggest that vitamin D can attribute to the inhibition of the inflammatory response in VAT from atherosclerotic mice by reducing proinflammatory cytokine production.

Ginsenoside Rb2 suppresses cellular senescence of human dermal fibroblasts by inducing autophagy

  • Kyeong Eun Yang;Soo-Bin Nam;Minsu Jang;Junsoo Park;Ga-Eun Lee;Yong-Yeon Cho;Byeong-Churl Jang;Cheol-Jung Lee;Jong-Soon Choi
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.337-346
    • /
    • 2023
  • Background: Ginsenoside Rb2, a major active component of Panax ginseng, has various physiological activities, including anticancer and anti-inflammatory effects. However, the mechanisms underlying the rejuvenation effect of Rb2 in human skin cells have not been elucidated. Methods: We performed a senescence-associated β-galactosidase staining assay to confirm cellular senescence in human dermal fibroblasts (HDFs). The regulatory effects of Rb2 on autophagy were evaluated by analyzing the expression of autophagy marker proteins, such as microtubule-associated protein 1A/1B-light chain (LC) 3 and p62, using immunoblotting. Autophagosome and autolysosome formation was monitored using transmission electron microscopy. Autophagic flux was analyzed using tandem-labeled GFP-RFP-LC3, and lysosomal function was assessed with Lysotracker. We performed RNA sequencing to identify potential target genes related to HDF rejuvenation mediated by Rb2. To verify the functions of the target genes, we silenced them using shRNAs. Results: Rb2 decreased β-galactosidase activity and altered the expression of cell cycle regulatory proteins in senescent HDFs. Rb2 markedly induced the conversion of LC3-I to LC3-II and LC3 puncta. Moreover, Rb2 increased lysosomal function and red puncta in tandem-labeled GFP-RFP-LC3, which indicate that Rb2 promoted autophagic flux. RNA sequencing data showed that the expression of DNA damage-regulated autophagy modulator 2 (DRAM2) was induced by Rb2. In autophagy signaling, Rb2 activated the AMPK-ULK1 pathway and inactivated mTOR. DRAM2 knockdown inhibited autophagy and Rb2-restored cellular senescence. Conclusion: Rb2 reverses cellular senescence by activating autophagy via the AMPK-mTOR pathway and induction of DRAM2, suggesting that Rb2 might have potential value as an antiaging agent.