• Title/Summary/Keyword: Ga-ga

Search Result 11,169, Processing Time 0.036 seconds

Growth of GaAs/AlGaAs structure for photoelectric cathode (광전음극 소자용 GaAs/AlGaAs 구조의 LPE 성장)

  • Bae, Sung Geun;Jeon, Injun;Kim, Kyoung Hwa
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.282-288
    • /
    • 2017
  • In this paper, GaAs/AlGaAs multi-layer structure was grown by liquid phase epitaxy with graphite sliding boat, which can be used as a device structure of a photocathode image sensor. The multi-layer structure was grown on an n-type GaAs substrate in the sequence as follows: GaAs buffer layer, Zn-doped p-type AlGaAs layer as etching stop layer, Zn-doped p-type GaAs layer, and Zn-doped p-type AlGaAs layer. The Characteristics of GaAs/AlGaAs structures were analyzed by using scanning electron microscope (SEM), secondary ion mass spectrometer (SIMS) and hall measurement. The SEM images shows that the p-AlGaAs/p-GaAs/p-AlGaAs multi-layer structure was grown with a mirror-like surface on a whole ($1.25mm{\times}25mm$) substrate. The Al composition in the AlGaAs layer was approximately 80 %. Also, it was confirmed that the free carrier concentration in the p-GaAs layer can be adjusted to the range of $8{\times}10^{18}/cm^2$ by hall measurement. In the result, it is expected that the p-AlGaAs/p-GaAs/p-AlGaAs multi-layer structure grown by the LPE can be used as a device structure of a photoelectric cathode image sensor.

Effect of Carrier Confinement and Optical Properties of Two-dimensional Electrons in Al0.3Ga0.7N/GaN and Al0.3Ga0.7N/GaN/Al0.15Ga0.85N/GaN Heterostructures (Al0.3Ga0.7N/GaN 및 Al0.3Ga0.7N/GaN/Al0.15Ga0.85N/GaN 이종접합 구조에서 운반자 구속 효과와 이차원 전자가스의 광학적 특성)

  • Kwack, H.S.;Lee, K.S.;Cho, H.E.;Lee, J.H.;Cho, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.359-364
    • /
    • 2008
  • We have investigated optical and structural properties of $Al_{0.3}Ga_{0.7}N$/GaN and $Al_{0.3}Ga_{0.7}N/GaN/Al_{0.15}Ga_{0.85}N/GaN$ heterostructures (HSs) grown by metal-organic chemical vapor deposition, by means of Hall measurement, high-resolution X-ray diffraction, and temperature- and excitation power-dependent photoluminescence (PL) spectroscopy. A strong GaN band edge emission and its longitudinal optical phonon replicas were observed for all the samples. At 10 K, a 2DEG-related PL peak located at ${\sim}\;3.445\;eV$ was observed for $Al_{0.3}Ga_{0.7}N$/GaN HS, while two 2DEG peaks at ${\sim}\;3.42$ and ${\sim}\;3.445\;eV$ were observed for $Al_{0.3}Ga_{0.7}N/GaN/Al_{0.15}Ga_{0.85}N/GaN$ HS due to the additional $Al_{0.15}Ga_{0.85}N$ layers. Moreover, the emission intensity of the 2DEG peak was higher in $Al_{0.3}Ga_{0.7}N/GaN/Al_{0.15}Ga_{0.85}N/GaN$ HS than in $Al_{0.3}Ga_{0.7}N$/GaN HS probably due to an effective confinement of the photo-excited holes by the additional $Al_{0.15}Ga_{0.85}N$ layers. The 2DEG-related emission intensity decreased with increasing temperature and disappeared at temperatures above 150 K. To investigate the origin of the new 2DEG peaks, the energy-band structure for multiple AlGaN/GaN HSs were simulated and compared with the experimental data. As a result, the observed high- and low-energy peaks of 2DEG can be attributed to the spatially-separated 2DEG emissions formed at different AlGaN/GaN heterointerfaces.

TEM analysis of pits of GaN thin film grown on intermediate temperature (TEM을 이용한 저온성장된 GaN박막의 결함분석)

  • 손광석;김동규;조형균
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.105-105
    • /
    • 2003
  • InGaN/GaN MQW 구조는 청색 및 녹색 범위의 밴드 갭을 가지는 반도체로 최근 LED 및 LD 제조 등에 이용되고 있다. InGaN/GaN MQW은 InGaN와 GaN의 최적 성장온도의 중간온도에서 실행된다. InGaN와 GaN는 최적 성장온도의 차이가 크므로 중간온도에서 성장 시에 많은 결함이 생긴다. 성장온도가 높으면 InN가 분해되고 낮을 경우에는 질소의 결핍이 일어난다. 최적성장온도의 선택이 매우 중요한 문제로 주목되었다. Si 도핑으로 중간온도 성장 시에 형성되는 결함을 감소시키고 광학적 특성을 향상시킨다고 보고되었다. 그러나, Si 도핑효과에 대한 구체적이고 체계적인 연구는 부족한 실정이다. MQWs 구조의 GaN 장벽층에 미치는 성장온도와 Si 도핑 효과를 이해하기 위해서는 고온에서 성잠시킨 GaN박막(HT-GaN) 위에 중간온도에서 성장된 GaN 에피층(IT-GaN)의 구조에 관한 연구가 선행되어야한다. 본 연구에서는 HT-GaN 위에 성장된 GaN 에피층에 미치는 성장 온도와 Si 도핑 효과에 관해 연구하였다.

  • PDF

Numerical Study of Enhanced Performance in InGaN Light-Emitting Diodes with Graded-composition AlGaInN Barriers

  • Kim, Su Jin;Kim, Tae Geun
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.16-21
    • /
    • 2013
  • In this paper, we report the effect of GaN/graded-composition AlGaInN/GaN quantum barriers in active regions on the electrical and optical properties of GaN-based vertical light emitting diodes (VLEDs). By modifying the aluminum composition profile within the AlGaInN quantum barrier, we have achieved improvements in the output power and the internal quantum efficiency (IQE) as compared to VLEDs using conventional GaN barriers. The forward voltages at 350 mA were calculated to be 3.5 and 4.0 V for VLEDs with GaN/graded-composition AlGaInN/GaN barriers and GaN barriers, respectively. The light-output power and IQE of VLEDs with GaN/graded-composition AlGaInN/GaN barriers were also increased by 4.3% and 9.51%, respectively, as compared to those with GaN barriers.

Ga Distribution in Cu(In,Ga)Se2 Thin Film Prepared by Selenization of Co-Sputtered Cu-In-Ga Precursor with Ga2Se3 Layer (Ga2Se3 층을 Cu-In-Ga 전구체 위에 적용하여 제조된 Cu(In,Ga)Se2 박막의 Ga 분포 변화 연구)

  • Jung, Gwang-Sun;Shin, Young-Min;Cho, Yang-Hwi;Yun, Jae-Ho;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.434-438
    • /
    • 2010
  • The selenization process has been a promising method for low-cost and large-scale production of high quality CIGS film. However, there is the problem that most Ga in the CIGS film segregates near the Mo back contact. So the solar cell behaves like a $CuInSe_2$ and lacks the increased open-circuit voltage. In this study we investigated the Ga distribution in CIGS films by using the $Ga_2Se_3$ layer. The $Ga_2Se_3$ layer was applied on the Cu-In-Ga metal layer to increase Ga content at the surface of CIGS films and to restrict Ga diffusion to the CIGS/Mo interface with Ga and Se bonding. The layer made by thermal evaporation was showed to an amorphous $Ga_2Se_3$ layer in the result of AES depth profile, XPS and XRD measurement. As the thickness of $Ga_2Se_3$ layer increased, a small-grained CIGS film was developed and phase seperation was showed using SEM and XRD respectively. Ga distributions in CIGS films were investigated by means of AES depth profile. As a result, the [Ga]/[In+Ga] ratio was 0.2 at the surface and 0.5 near the CIGS/Mo interface when the $Ga_2Se_3$ thickness was 220 nm, suggesting that the $Ga_2Se_3$ layer on the top of metal layer is one of the possible methods for Ga redistribution and open circuit voltage increase.

Dependence of Doping on Indium Content in InGaN/GaN Multiple Quantum Wells for Effective Water Splitting (다양한 In 조성을 가진 InGaN/GaN Multi Quantum Well의 효과적인 광전기화학적 물분해)

  • Bae, Hyojung;Bang, Seung Wan;Ju, Jin-Woo;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.1-5
    • /
    • 2018
  • In this study, the effects of indium (In) doping in InGaN/GaN multi quantum well (MQW) on photoelectrochemical (PEC) properties were investigated. Each quantum well (QW) layer with controlled In content were grown on sapphire substrate. Before growth of MQW, GaN growth consisted of various stages in the following order: buffer GaN growth, undoped GaN growth, and Si-doped n-type GaN growth. Absorbance of InGaN/GaN MQW having different In composition was higher than that of the InGaN/GaN MQW having a constant In composition. It indicates that InGaN layer having different In composition absorbs light having a broad spectrum energy. These results are in agreement with those in photoluminescence (PL). After evaluation of PEC properties, it demonstrated that InGaN/GaN MQW having different In composition was improved InGaN/GaN MQW having constant In composition in PEC water splitting ability.

A study on surface photovoltage of $Al_{0.24}Ga_{0.76}As/GaAs$ epilayer ($Al_{0.24}Ga_{0.76}As/GaAs$ 에피층에서의 표면 광전압에 관한 연구)

  • 유재인;김도균;김근형;배인호;김인수;한병국
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.116-121
    • /
    • 2000
  • We measured surface photovoltage (SPV) of $Al_{0.24}Ga_{0.76}As/GaAs$ epilayer grown by molecular beam epitixy (MBE). The band gap energies of $Al_{0.24}Ga_{0.76}As/GaAs$ epilayer, GaAs substrate and buffer layer obtained from SPV signals are 1.70, 1.40 and 1.42 eV, respectively. There results are in good agreements with photoreflectance (PR) measurement. The measured SPV intensity of GaAs substrate is three times larger than $Al_{0.24}Ga_{0.76}$Asepilayer by carrier mobility difference. The parameters of Varshni equation were determined from the SPV spectra as a function of temperature.

  • PDF

?Growth and Characterization of InGaN/GaN MQWs on Two Different Types of Substrate

  • Kim, Taek-Sung;Park, Jae-Young;Cuong, Tran Viet;Hong, Chang-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.2
    • /
    • pp.90-94
    • /
    • 2006
  • We report on the growth and characterization of InGaN/GaN MQWs on two different types of sapphire substrates and GaN substrates. The InGaN/GaN MQWs are grown by using metalorganic chemical vapor deposition. Our analysis of the satellite peaks in the HRXRD patterns shows, GaN substrates InGaN/GaN MQW compared to sapphire substrates InGaN/GaN MQW, more compressive strain on GaN substrates than on sapphire substrates. However, results of optical investigation of InGaN/GaN MQWs grown on GaN substrates and on sapphire substrates, which have lower Stokes-like shift of PL to GaN substrates compared to sapphire substrates, are shown to the potential fluctuation and the quantum-confined Stark effect induced by the built-in internal field due to spontaneous and straininduced piezoelectric polarizations. The InGaN/GaN MQWs are shown to quantify the Stokes-like shift as a function of x.

Degradation analysis of AlGaAs/GaAs HBTs and improvement of reliability by using InGaP ledge emitter (AlGaAs/GaAs HBT의 열화분석과 InGaP ledge 에미터에 의한 신뢰도 개선)

  • 최번재;김득영;송정근
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.7
    • /
    • pp.88-93
    • /
    • 1998
  • For the self-aligned AlGaAs/GaAs HBTs, the surface states at the interface between the extrinsic base surface and the passivation nitride is a major cause of degradation of dc characteristics. In this paper the degradation mechanisms of self-aligned AlGaAs/GaAs HBT were analyzed, and GaAs HBTs, which employed an InGaP ledge emitter structure formed by the nonself-aligned process to cover the surface of the extrinsic base and reduce the surface states, produced high reliability. Accoridng to the acceleration lifetime test, the nonself-aligned InGaP/GaAs HBTs produced very reliable dc characteristics comparing with the self-aligned AlGaAs/GaAs HBTs. The activation energy was 1.97eV and MTTF $4.8{\times}10^{8}$ hrs at $140^{\circ}C$ which satisfied the MIL standard.

  • PDF

Optically Pumped Stimulated Emission from Column-III Nitride Semiconductors. (III족 질화물반도체의 광여기 유도방출)

  • 김선태;문동찬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.50-53
    • /
    • 1994
  • In this study. we report the properties of optically pumped stimulated emission at room temperature (RT) from column-III nitride semiconductors of GaN, GaInN, AlGaN/GaN double hetero-structure (DH) and AlGaN/GaInN DH which grown by low pressure metal-organic vapor phase epitaxy on sapphire substrate using an AIN buffer-layer. The peak wavelength of the stimulated emission at RT from AlGaN/GaN DH is 370nm and the threshold of excitation pumping power density (P$\_$th/) is about 89㎾/$\textrm{cm}^2$, and they from AlGaN/GaInN DH are 403nm and 130㎾/$\textrm{cm}^2$, respectively. The P$\_$th/ of AlGaN/GaN and AlGaN/GaInN DHs are lower than the bulk materials due to optical confinement within the active layers of GaN and GaInN. The optical gain and the polarization of stimulated emission characteristics are presented in this article.