Browse > Article
http://dx.doi.org/10.5757/JKVS.2008.17.4.359

Effect of Carrier Confinement and Optical Properties of Two-dimensional Electrons in Al0.3Ga0.7N/GaN and Al0.3Ga0.7N/GaN/Al0.15Ga0.85N/GaN Heterostructures  

Kwack, H.S. (National Research Laboratory for Nano-Bio-Photonics, Department of Physics, Chungbuk National University)
Lee, K.S. (IT Convergence & Components Laboratory, Electronics and Telecommunications Research Institute (ETRI))
Cho, H.E. (Department of Electric and Electronic Engineering, Kyungpook National University)
Lee, J.H. (Department of Electric and Electronic Engineering, Kyungpook National University)
Cho, Y.H. (National Research Laboratory for Nano-Bio-Photonics, Department of Physics, Chungbuk National University)
Publication Information
Journal of the Korean Vacuum Society / v.17, no.4, 2008 , pp. 359-364 More about this Journal
Abstract
We have investigated optical and structural properties of $Al_{0.3}Ga_{0.7}N$/GaN and $Al_{0.3}Ga_{0.7}N/GaN/Al_{0.15}Ga_{0.85}N/GaN$ heterostructures (HSs) grown by metal-organic chemical vapor deposition, by means of Hall measurement, high-resolution X-ray diffraction, and temperature- and excitation power-dependent photoluminescence (PL) spectroscopy. A strong GaN band edge emission and its longitudinal optical phonon replicas were observed for all the samples. At 10 K, a 2DEG-related PL peak located at ${\sim}\;3.445\;eV$ was observed for $Al_{0.3}Ga_{0.7}N$/GaN HS, while two 2DEG peaks at ${\sim}\;3.42$ and ${\sim}\;3.445\;eV$ were observed for $Al_{0.3}Ga_{0.7}N/GaN/Al_{0.15}Ga_{0.85}N/GaN$ HS due to the additional $Al_{0.15}Ga_{0.85}N$ layers. Moreover, the emission intensity of the 2DEG peak was higher in $Al_{0.3}Ga_{0.7}N/GaN/Al_{0.15}Ga_{0.85}N/GaN$ HS than in $Al_{0.3}Ga_{0.7}N$/GaN HS probably due to an effective confinement of the photo-excited holes by the additional $Al_{0.15}Ga_{0.85}N$ layers. The 2DEG-related emission intensity decreased with increasing temperature and disappeared at temperatures above 150 K. To investigate the origin of the new 2DEG peaks, the energy-band structure for multiple AlGaN/GaN HSs were simulated and compared with the experimental data. As a result, the observed high- and low-energy peaks of 2DEG can be attributed to the spatially-separated 2DEG emissions formed at different AlGaN/GaN heterointerfaces.
Keywords
AlGaN/GaN; two-dimensional electron gas; photoluminescence; metalorganic chemical vapor deposition;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 K, Nishihori, Y. Kitaura, M. Hirose, M. iharam M. Nagaoka, and N. Uchitomi, IEEE Trans. Electron Devices. 45, 1385 (1998)   DOI   ScienceOn
2 K. Mochizuki, T. Okam and I. Ohbu, Electron. Lett. 37, 252 (2005)   DOI   ScienceOn
3 T. O. Dickson, R. Beerkens, and S. P. Voinigescu. IEEE J. Solid-State Circuits 40, 994 (2005)   DOI   ScienceOn
4 H. S. Kwack, K. S. Lee, H. J. Kim, E. Yoon, and Y. H. Cho, J. Korean. Vac. Soc. 17, 34 (2008)   과학기술학회마을   DOI   ScienceOn
5 T. Wan, Y. Ohno, M. Lachab, D. Nakagawa, T. shirahama, S. Sakai, and H. Ohno, Appl. Phys. Lett. 74, 3531 (1999)   DOI
6 J. I. Pankove and T. D. Moustakas, Semiconductors and Semimetals, Volume 50 (1998)
7 H.-S. Kwack, Y. H. Cho, G. H. Kim, M. R. Park, D. H. Youn, S. B. Bae, K. S. Lee, J. H. Lee, J. H. Lee, T. W. Kim, T. W. Kang, and K. L Wang, Appl. Phys. Lett. 87, 041909 (2005)   DOI   ScienceOn
8 V. A. Joshikin, C. A. Parker, S. M. Bedair, J. F. Muth, I. K. Shmagin, R. M. Kolbas, E. L. Piner, and R. J. Molnar, J. Appl. Phys. 86, 281 (1999)   DOI
9 S. J. Lee, J. O. Kim, C. S. Kim, S. K. Noh, and K. Y. Lim, J. Korean. Vac. Soc. 16, 27 (2007)   과학기술학회마을   DOI   ScienceOn
10 H. S. Kwack, Y. H. Cho, G. H. Kim, M. R. Park, D. H. Youn, S. B. Bae, K.-S. Lee, J. H. Lee, and J. H. Lee, Phys. Stat. Sol. (c) 3, 2109 (2006)   DOI   ScienceOn
11 F. Stern and S. D. Sarma, Phys. Rev. B 30, 840 (1984)   DOI
12 Y. G. Xie, S. Kasai, H. Takahashi, C,. Jiang, and H. Hasegawa, IEEE electron Device Lett. 22, 312 (2001)   DOI   ScienceOn
13 C. H. Oxley and M. J. Uren, IEEE Trans. Electron Devices, 52, 165 (2005)   DOI   ScienceOn
14 S. M. Kim, H. S. Kwack, S. W. Hwang, Y. H. Cho, H. I. Cho, J. H. Leem and K. L. Wang, Phys. Stat. Sol. (c) 3, 2113 (2006)   DOI   ScienceOn
15 K. Fleishcer, M. Toth, M. R. Phillips, J. Zou, G. Li, and S. J. Chua, Appl. Phys. Lett. 74, 1114 (1999)   DOI   ScienceOn
16 J. Ao, Q. Zeng, Y. Zhao, X. Ki, W. Liu, S. Liu, and C. Liang, IEEE electron Device Lett. 21, 200 (2000)   DOI   ScienceOn
17 D. Kovalev, B. Averboukh D. Volmm and B. K. Meyer, Phys. Rev. B 54, 2518 (1996)   DOI   ScienceOn
18 Q. X. Zhao, J. P. Bergmanm, P. O. Holtz, B. Monemar, C. Hallin, M. Sundaram, J. L. Merz, and A. C. Gossard, Semicond. Sci. Technol. 5, 884 (1990)   DOI   ScienceOn
19 H.-S. Kwack, S. B. Bae, K. S. Lee, J. H. Lee, J. H. Lee, and Y. H. Cho, Sae mulli 53, 412 (2006)