• Title/Summary/Keyword: GUILD ANALYSIS

Search Result 62, Processing Time 0.021 seconds

Water Quality and Ecosystem Health Assessments in Urban Stream Ecosystems (도심하천 생태계에서의 수질 및 생태건강성 평가)

  • Kim, Hyun-Mac;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.4
    • /
    • pp.311-322
    • /
    • 2008
  • The objectives of the study were to analyze chemical water quality and physical habitat characteristics in the urban streams (Miho and Gap streams) along with evaluations of fish community structures and ecosystem health, throughout fish composition and guild analyses during 2006$\sim$2007. Concentrations of BOD and COD averaged 3.5 and 5.7 mg L$^{-1}$, in the urban streams, while TN and TP averaged 5.1 mg L$^{-1}$ and 274 ${\mu}g$ L$^{-1}$, indicating an eutrophic state. Especially, organic pollution and eutrophication were most intense in the downstream reach of both streams. Total number of fish was 34 species in the both streams, and the most abundant species was Zacco platypus (32$\sim$42% of the total). In both streams, the relative abundance of sensitive species was low (23%) and tolerant and omnivores were high (45%, 52%), indicating an typical tolerance and trophic guilds of urban streams in Korea. According to multi-metric models of Stream Ecosystem Health Assessments (SEHA), model values were 19 and 24 in Miho Stream and Gap Stream, respectively. Habitat analysis showed that QHEI (Qulatitative Habitat Evaluation Index) values were 123 and 135 in the two streams, respectively. The minimum values in the SEHA and QHEI were observed in the both downstreams, and this was mainly attributed to chemical pollutions, as shown in the water quality parameters. The model values of SEHA were strongly correlated with conductivity (r=-0.530, p=0.016), BOD (r=-0.578, p< 0.01), COD (r=-0.603, p< 0.01), and nutrients (TN, TP: r>0.40, p<0.05). This model applied in this study seems to be a useful tool, which could reflect the chemical water quality in the urban streams. Overall, this study suggests that consistent ecological monitoring is required in the urban streams for the conservations along with ecological restorations in the degradated downstrems.

Ecological Health Diagnosis of Sumjin River using Fish Model Metric, Physical Habitat Parameters, and Water Quality Characteristics (어류모델 메트릭, 물리적 서식지 변수 및 수질특성 분석에 의한 섬진강의 생태 건강성 진단)

  • Lee, Eui-Haeng;Choi, Ji-Woong;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.184-192
    • /
    • 2007
  • This study was to evaluate ecological health of Sumjin River during April${\sim}$June 2006. The ecological health assessments was based on the Index of Biological Integrity (IBI), Qualitative Babitat Evaluation Index (QHEI), and water chemistry. For the study, the models of IBI and QHEI were modified as 10 and 11 metric attributes, respectively. We also analyzed spatial patterns of chemical water quality over the period of $2002{\sim}2005$, using the water chemistry dataset, obtained from the Ministry of Environment, Korea. In Sumjin River, values of IBI averaged 33 (n= 12), which is judged as a "Fair${\sim}$Good" condition after the criteria of Barbour at al. (1999). There was a distinct spatial variation. Mean IBI score at Site 5 was estimated as 40, indicating a "Good" condition whereas, the mean at Site 3 was 23, indicating a "Poor${\sim}$Fair" condition. Habitat analysis showed that QHEI values in the river averaged 109 (n=6), indicating a "Marginal" condition after the criteria of Harbour et al. (1999). Values of BOD and COD averaged 1.3 mg $L^{-1}$ (scope: $0.9{\sim}1.8$ mg $L^{-1}$) and 3.3 mg $L^{-1}$ (scope: $2.8{\sim}4.0$ mg $L^{-1}$), respectively during the study. It was evident that chemical pollutions by organic matter were minor in the river. Total nitrogen (TN) and total phosphorus (TP) averaged 2.5 mg $L^{-1}$ and 0.067 mg $L^{-1}$, respectively, and the nutrients did not show large longitudinal gradients between the upper and lower reach. Overall, dataset of IBI, QHEI, and water chemistry suggest that river health has been well maintained, compared to other major watersheds in Korea and should be protected from habitat disturbance and chemical pollutions.