• Title/Summary/Keyword: GT(Gas Turbine)

Search Result 46, Processing Time 0.021 seconds

Performance Analysis of GT/ST Hybrid System for Marine Power Applications(under Conditions of Air-Cooled Gas Turbine) (가스터빈의 냉각공기를 고려한 선박동력용 GT/ST 하이브리드시스템의 성능 평가)

  • Kim, Sun-Hee;Jung, Byung-Gun;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.586-594
    • /
    • 2012
  • A future type ship power system requires both economic and eco-friendliness. That is, this should be reduced the discharge quantity of air pollutants and green-house gases as well as have high energy efficiency. Recently, gas turbines have been realized a lot of technical development in terms of efficiency and safety, and are widening the example of their adoption to a GT/ST hybrid system in a power plant as well as an aviation use. This paper reviewed the performance characteristics of a GT/ST hybrid system of several ten MW class, not large capacity, with a simulation in order to evaluate the possibility of a GT/ST hybrid system for ships. The reviewed GT/ST hybrid system has maximum 49 % efficiency, has the highest efficiency point for TIT, and has a 70~75 % and 25~30 % load ratio for a gas turbine and a steam turbine respectively.

Analysis of Gas Turbine Competitiveness and Adequacy of Electricity Market Signal in Korea (한국 전력시장에서의 가스터빈(GT) 발전기 경쟁력 및 시장 미진입 적정성 분석)

  • Kim, Eun Hwan;Park, Yong-Gi;Park, Jong-Bae;Roh, Jae Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1172-1180
    • /
    • 2017
  • This study analyzed competition in peak load plants between CCGT and GT instead of competition between base and peak load plants like in previous studies. In common overseas power markets, CCGT and GT claim certain market shares as peak load plants with the latter boasting a high utilization rate as reserve plants. In South Korea, however, there has been no introduction of GT in the market that opened in 2001 with no analysis cases of GT's economy as a peak load plant. The current power market of South Korea is run on the cost-based pool, which allows for no price spikes. Since the capacity payment criteria for compensations for missing money are set based on GT generators, the power market uses GT generators as marginal plants. The purposes of this study were to analyze the competitive edge of GT generators as peak load plants in the domestic power market of South Korea and identify the causes of GT's failure in market entry, thus assessing the adequacy of market signals in the domestic power market.

A Study on the Resetting of Incremental Heat Rate Curve of Combined Cycle Unit by Combination (복합발전기 조합별 증분비 곡선 재설정에 관한 연구)

  • Hong, Sang-Beom;Choi, Jun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.8-12
    • /
    • 2019
  • Combined Cycle Unit(CC) generates the primary power from the Gas Turbine(GT) and supplies the remaining heat of the GT to the Steam Turbine(ST) to generate the secondary power from the ST. It plays a major role in terms of energy efficiency and Load Frequency Control(LFC). Incremental Heat Rate(IHR) curves of economic dispatch(ED) of CC is applied differently by GT/ST combination. But It is practically difficult because of performance test by all combinations. This paper suggests a reasonable method for estimating IHR curves for partial combinations(1:1~(N-1):1) using IHR curves when operating with GT alone(1:0) and with all(N:1) combinations of CC.

A study on characteristics of SOFC/GT system for the supply gas flow rates (공급가스 유량에 따른 SOFC/GT 시스템 특성에 관한 연구)

  • Park, Sang-Kyun;Lee, Joo-Hee;Park, Geong-Dae;Choi, Jae-Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.765-772
    • /
    • 2015
  • In this research, the characteristics of SOFC/GT (Solid Oxide Fuel Cell/Gas Turbine) system temperature, stack power and system efficiency for flow rates of air, CH4 and water supplied to SOFC stack have been investigated. The temperature of the gas supplied to cathode and anode of SOFC stack in the SOFC/GT system are maintained by utilizing exhaust gas without the addition of external heat source. As a result, within the scope of this study, temperatures of gas supplied to cathode and anode of SOFC stack were maintained at 1000 (K) by utilizing the exhaust gas of the SOFC/GT system without the addition of external heat source. The system efficiency is increased with increase of air flow rate supplied to the stack and with decrease of $CH_4$ flow rate supplied to the stack. In addition, it can be found that the flow rate of the exhaust gas supplied to the turbine had a significant effect on the system efficiency. And the efficiencies of SOFC stack and SOFC/GT system depending upon various operating conditions of the SOFC/GT system is 51~57% and 57~73%, respectively.

HTGR PROJECTS IN CHINA

  • Wu, Zongxin;Yu, Suyuan
    • Nuclear Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.103-110
    • /
    • 2007
  • The High Temperature Gas-cooled Reactor (HTGR) possesses inherent safety features and is recognized as a representative advanced nuclear system for the future. Based on the success of the HTR-10, the long-time operation test and safety demonstration tests were carried out. The long-time operation test verifies that the operation procedure and control method are appropriate for the HTR-10 and the safety demonstration test shows that the HTR-10 possesses inherent safety features with a great margin. Meanwhile, two new projects have been recently launched to further develop HTGR technology. One is a prototype modular plant, denoted as HTR-PM, to demonstrate the commercial capability of the HTGR power plant. The HTR-PM is designed as $2{\times}250$ MWt, pebble bed core with a steam turbine generator that serves as an energy conversion system. The other is a gas turbine generator system coupled with the HTR-10, denoted as HTR-10GT, built to demonstrate the feasibility of the HTGR gas turbine technology. The gas turbine generator system is designed in a single shaft configuration supported by active magnetic bearings (AMB). The HTR-10GT project is now in the stage of engineering design and component fabrication. R&D on the helium turbocompressor, a key component, and the key technology of AMB are in progress.

A New Methodology for Advanced Gas Turbine Engine Simulation

  • M.S. Chae;Y.C. Shon;Lee, B.S.;J.S. Eom;Lee, J.H.;Kim, Y.R.;Lee, H.J.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.369-375
    • /
    • 2004
  • Gas turbine engine simulation in terms of transient, steady state performance and operational characteristics is complex work at the various engineering functions of aero engine manufacturers. Especially, efficiency of control system design and development in terms of cost, development period and technical relevance implies controlling diverse simulation and identification activities. The previous engine simulation has been accomplished within a limited analysis area such as fan, compressor, combustor, turbine, controller, etc. and this has resulted in improper engine performance and control characteristics because of limited interaction between analysis areas. In this paper, we propose a new simulation methodology for gas turbine engine performance analysis as well as its digital controller to solve difficulties as mentioned above. The novel method has particularities of (ⅰ) resulting in the integrated control simulation using almost every component/module analysis, (ⅱ) providing automated math model generation process of engine itself, various engine subsystems and control compensators/regulators, (ⅲ) presenting total sophisticated output results and easy understandable graphic display for a final user. We call this simulation system GT3GS (Gas Turbine 3D Graphic Simulator). GT3GS was built on both software and hardware technology for total simulation capable of high calculation flexibility as well as interface with real engine controller. All components in the simulator were implemented using COTS (Commercial Off the Shelf) modules. In addition, described here includes GT3GS main features and future works for better gas turbine engine simulation.

  • PDF

Visualization method of Clearance Design of Gas Turbine using Commercial Finite Element Analysis program (상용 유한요소 해석 프로그램을 이용한 가스터빈 간극 설계의 가시화 방법)

  • Han, Do Won;Kim, Yeong Chun;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.1
    • /
    • pp.78-84
    • /
    • 2019
  • A gas turbine is the main equipment of a power plant that generates electricity by high-speed rotation of the rotor in a high-temperature environment. In particular, in the case of medium to large-sized gas turbines, the rotor is composed of a plurality of stages, and each component is exposed to different physical environments. Especially, in the case of the tip clearance of the turbine, it is a very important factor in the performance of the design items and the operation of the stable turbine, and a design considering the physical behavior of all major parts should be done. In this study, we will discuss the process of visualizing the physical behavior of turbine operating conditions and the method of designing tip clearance for stable operation by using commercial finite element analysis program for gas turbine assembly model and single product.

Performance Analysis of Hybrid SOFC/Uncooled GT System for Marine Power Applications (선박동력용 SOFC/GT(무냉각) 하이브리드시스템의 성능 평가)

  • Kim, Myoung-Hwan;Kil, Byung-Lea
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1050-1060
    • /
    • 2012
  • As an approach to high-efficiency of SOFC system, SOFC/GT Hybrid system is effective. However, if the output size of the system belongs to the marine class of dozens MWs, the introduction of the cooling system of GT system, which is used as sub-system, makes its related devices complicated and also makes its control difficult. Accordingly, for the marine use, SOFC/GT (non-cooling)Hybrid system looks more suitable than SOFC/GT(cooling)Hybrid system. This study established the SOFC/GT (non-cooling)Hybrid system, and examined the operating temperature & current density of the stack for the system, pressure ratio of the gas turbine, the influence of TIT(Turbine Inlet Temperature) on system performance, etc. through the simulation process. Through this research process, this study was able to confirm that electrical efficiency rises in spite of the increase in the required power for the air compressor, and there exists a limited range of temperatures for operation in TIT.

An Experimental Study on NOx Emissions with Hydrogen and Natural gas Co-firing for EV burner of GT24 (GT24 가스터빈용 EV 버너의 수소혼소에 따른 질소산화물 배출 특성에 대한 실험적 연구)

  • Jeongjae Hwang;Won June Lee;Kyungwook Min;Do Won Kang;Han Seo Kim;Min Kuk Kim
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.85-91
    • /
    • 2023
  • In this study, an experimental study was conducted on the flame behavior, combustion dynamics, and NOx emission characteristics for hydrogen co-firing with the EV burner which is the first stage combustor of GT24. It was confirmed that as the hydrogen co-firing rate increases, the NOx emission increases. This change was elucidate to be the result of a combination of changes in penetration depth due to changes in fuel density, reduction in fuel mixing due to changes in flame position due to increased flame propagation speed, and oscillation of fuel mixedness due to combustion instability. Through pressurization tests in the range of 1.3 to 3.1 bar, NOx emission characteristics under high-pressure operating conditions were predicted, and based on this, the hydrogen co-firing limits of the EV burner was evaluated.

Acoustic Analysis in an Annular Gas Turbine Combustor (GT24) Network Modeling Approach (네트워크 모델링 기법을 이용한 환형 가스터빈 연소기(GT24)에서의 음향장 해석)

  • Jaewoo Jang;Hyungu Roh;Daesik Kim
    • Journal of ILASS-Korea
    • /
    • v.28 no.3
    • /
    • pp.119-125
    • /
    • 2023
  • In this research, a network model was developed to predict combustion instability in an annular gas turbine combustor (GT24) for power generation. The model consisted of various acoustic elements such as several ducts and area changes which could represent a real combustor with a complex geometry, applied mass, momentum, and energy equations to each element. In addition, a one-dimensional network model through a cylindrical coordinate system has been proposed to predict various acoustic modes. As a result of the analysis, the key resonant frequencies such as longitudinal, circumferential, and complex modes were derived from the EV combustor of GT24, and the reliability of the current model was verified through comparison with the 3D Helmholtz solver.