• Title/Summary/Keyword: GSMBE

Search Result 8, Processing Time 0.025 seconds

Growth of InGaN on sapphire by GSMBE(gas source molecular beam epitaxy) using $DMH_y$(dimethylhydrazine) as nitrogen source at low temperature (Nitrogen source로 암모니아, $DMH_y$(dimethylhydrazine)을 사용해 Gas-Source MBE로 성장된 InGaN 박막특성)

  • Cho, Hae-Jong;Han, Kyo-Yong;Suh, Young-Suk;Park, Kang-Sa;Misawa, Yusuke
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1010-1014
    • /
    • 2004
  • High quality GaN layer and $In_xGa_{1-x}N$ alloy were obtained on (0001)sapphire substrate using ammonia$(NH_3)$ and dimethylhydrazine$(DMH_y)$ as a nitrogen source by gas source molecular hem epitaxy(GSMBE) respectively. As a result, RHEED is used to investigate the relaxation processes which take place during the growth of GaN and $In_xGa_{1-x}N$. The full Width at half maximum of the x-ray diffraction(FWHM) rocking curve measured from Plane of GaN has exhibitted as narrow as 8 arcmin. Photoluminescence measurement of GaN and $In_xGa_{1-x}N$ were investigated at room temperature, where the intensity of the band edge emission is much stronger than that of deep level emission. In content of $In_xGa_{1-x}N$ epitaxial layer according to growth condition was investigated.

  • PDF

The 607nm GaInP/AlInP Distributed Bragg Reflector Visible Laser Grown by Gas source Molecular Beam (GSMBE에 의한 단파장 GaInP/AIInP DBR 반도체 레이저 제작 및 특성)

  • ;;Katsumi Kishino;Yawara Kaneko
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.9
    • /
    • pp.24-29
    • /
    • 1993
  • The 607 nm GaInP/AlInP distributed bragg reflector (DBR) lasers using the second order gratings period of 184.7 nm were fabricated by gas source molecular beam epitaxy (GSMBE) and the conventional holographic method. GaInP/AlInP DBR lasers show single mode operations up to 1.8 times the threshold currents with a wavelength of 607 nm at 140 K and a wavelength shift of 0.033 nm/K is observed. No mode hopping was found in the temperature ranging from 120 to 165K.

  • PDF

Growth of GaN on sapphire substrate by GSMBE(gas source molecular beam epitaxy) using ammonia as nitrogen source (Nitrogen source로 ammonia를 사용해 GSMBE로 성장된 GaN 박막 특성)

  • Cho Hae-jong;Han Kyo-yong;Suh Young-suk;Misawa Yusuke;Park Kang-sa
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.501-504
    • /
    • 2004
  • High quality GaN layer was obtained on 0001 sapphire substrate using ammonia($NH_3$) as a nitrogen source by gas source molecular beam epitaxy. As a result, RHEED is used to investigate the relaxation processes which take place during the growth of GaN. In-situ RHEED(reflection high electron energy diffraction) appeared streaky-like pattern. The full Width at half maximum of the x-ray diffraction(FWHM) rocking curve measured from plane of GaN has exhibited as narrow as 8arcmin and surface roughness was 7.83nm. Photoluminescence measurement of GaN was investigated at room temperature, where the intensity of the band edge emission is much stronger than that of deep level emission. The GaN epitaxy layer according to various growth condition was investigated.

  • PDF

Electron mobility and low temperature magnetoresistance effect in $Si/Si_{1-x}Ge_x$ quantum well devices ($Si/Si_{1-x}Ge_x$Quantum Well 디바이스에서의 전자이동도 및 저온 자기저항효과)

  • 김진영
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.2
    • /
    • pp.148-152
    • /
    • 1999
  • the low temperature magnetoresistance effect, electron mobilities, and 2 Dimensional electron Gases (2DEG) properties were investigated in $Si/Si_{1-x}Ge_x$ quantum well devices. N-type $Si/Si_{1-x}Ge_x$ structures were fabricated by utilizing a gas source Molecular Beam Epitaxy (GSMBE). Thermal oxidation was carried out in a dry O atmosphere at $700^{\circ}C$ for 7 hours. Electron mobilities were measured by using a Hall effect and a magnetoresistant effect at low temperatures down to 0.4K. Pronounced Shubnikov-de Haas (SdH) oscillations were observed at a low temperature showing two dimensional electron gases (2DEG) in s tensile strained Si quantum well. The electron sheet density (ns) of $1.5\times10^{12}[\textrm{cm}^{-2}]$ and corresponding electron mobility of 14200 $[\textrm{cm}^2V^{-1}s^{-1}]$ were obtained at a low temperature of 0.4K from $Si/Si_{1-x}Ge_x$ structures with thermally grown oxides.

  • PDF

New Trends in GaAs Epitaxial Techniques (GaAs 에피 성장 기술의 최근 연구 동향)

  • Park, Seong-Ju;Cho, Keong-Ik
    • Electronics and Telecommunications Trends
    • /
    • v.3 no.4
    • /
    • pp.3-12
    • /
    • 1988
  • Epilayer growing process has been recognized as a key technology for successful GaAs based devices and integrations. These may include HEMT, multiple quantum well structures, band gap engineering, and quantum confinement heterostructures. The fabrication of epilayers in these devices must meet very stringent requirements in terms of crystallinity, composition, film thickness and interface quality. In particular, the quality of interfaces is getting more important because the film thickness, and flatness, roughness and stability at interface of ultrathin films cause critical effects on the device performance. This article reviews the current status of modern epitaxial techniques which have been developed in the last few years. First, the new techniques PLE, GI, MEE, TSL based on MBE technique will be reviewed and their technical importance will be stressed. Secondly, MOMBE, GSMBE, CBE which combine the advantages of MBE and MOCVD will also be discussed. Thirdly, the new sophisticated epitaxial technique, ALE, of which mechanism is totally different from others, will also be reviewed. Finally, areas which should be exploited more extensively to accomplish these techniques will be addressed.

High Performance InAIAs/InGaAs Metal-Semiconductor-Metal Photodetectors Grown by Gas Source Molecular Beam Epitaxy

  • Zhang, Y.G.;Chen, J.X.;Li, A.Z.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.75-78
    • /
    • 1995
  • Gas source molecular beam epitaxy have been used in the growth of InAlAsAnGaAs MSM-PD structure, in which InAlAs ultra thin layer was used as Schottky barrier enhancement material. High performance MSM-PDs have been constructed on the grown wafer. High breakdown voltage of >30V, low dark current density of $3pA/\mu \textrm{cm}^2$ at 10V bias and fast transient response of <20ps rise time / <40ps FWHM have been measured, which confirm the results that GSMBE is a superior method for the growth of materials with high layer and interfacial quality, especially for InP based InAIAdInGaAs system.

  • PDF

GSMBE 방법으로 Si(110) 기판 위에 성장된 GaN 박막의 미세구조 연구

  • Lee, Jong-Hun;Kim, Yeong-Heon;An, Sang-Jeong;No, Yeong-Gyun;O, Jae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.193.1-193.1
    • /
    • 2015
  • 실리콘 (Si) 기판 위에 고품질의 갈륨질화물 (GaN) 박막을 성장시키기 위한 노력이 계속되고 있다. 실리콘 기판은 사파이어 기판 보다 경제적인 측면에서 유리하고, 실리콘 직접화 공정에 GaN 소자를 쉽게 접목 가능하다는 장점이 있다. GaN 박막은 2차원 전자 가스형성을 통한 고속소자, 직접 천이형 밴드갭을 이용한 발광소자 및 고전압 소자로써 활용 가능한 물질이다. 종래에는 Si(100) 및 Si(111) 기판 위에 GaN 박막 성장에 대한 연구가 주로 진행되었다. 하지만 대칭성과 격자 불일치도 등 결정학적 특성을 고려할 때 Si(100) 기판 위에 고품질의 GaN 박막을 성장시키는 것은 쉽지 않다. Si(111) 기판은 실리콘 소자 직접화 공정에 적합하지 못한 단점을 가지고 있다. 반면, 최근 Si(110) 기판 위에서 비등방적 변형 제어를 통한 고품질 GaN 박막 성장이 보고 되어 실리콘 집적 소자와 결합한 고전압 소자 및 고속소자 구현에 관한 연구가 진행되고 있다. 본 연구에서는 투과전자현미경 연구를 바탕으로 Si(110) 기판 위에 성장된 GaN의 미세구조에 관한 연구를 소개한다. 열팽창계수의 차이에 의한 GaN 박막 내 결함 생성을 줄이기 위하여 AlN 완충층이 사용되었다. GaN 박막을 암모니아 ($NH_3$) 유량이 다른 조건에서 성장시킴으로써 GaN 박막 미세구조의 암모니아 유량 의존성에 관한 연구를 진행하였다. GaN 박막에서 투과전자현미경 연구와 X-ray 회절 연구를 통하여 결함 거동 및 결정성을 확인하였다. $NH_3$ 유랑이 증가함에 따라 GaN의 성장 거동이 3차원에서 2차원으로 변화됨을 관찰하였다. 또한, 전위밀도의 증가도 확인되었다. $NH_3$ 유량이 낮은 경우 GaN 전위는 AlN와 GaN 경계에 주로 위치하고 GaN 표면 근처에는 전위밀도가 감소하였으나, $NH_3$ 유량이 높을 경우 GaN 박막 표면까지 전위가 관통됨을 확인하였다.

  • PDF