• Title/Summary/Keyword: GSHP System

Search Result 108, Processing Time 0.027 seconds

Performance Analysis on Combined Horizontal Ground Source Heat Pump with Earth tube using EnergyPlus (EnergyPlus를 이용한 수평형의 지열 히트펌프와 어스튜브를 조합한 시스템의 성능 검토)

  • Cho, Sung-Woo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.2
    • /
    • pp.22-29
    • /
    • 2017
  • This study is performed to performance of the combined system the GSHP (Ground Source Heat Pump) system with the Earth tube system using EnergyPlus program. The Earth tube system using fan is characteristics as supply lower (higher) air temperature than outdoor air temperature in cooling and heating seasons, the GSHP system is characteristics as small indoor air temperature variation range. As the results of Earth tube + GSHP system simulation, GSHP power can be reduced than the GSHP single operation as 17.3% in cooling seasons and 32.5% in heating seasons, the GSHP design capacity can be replaced more small size.

Economic Analysis of a Residential Ground-Source Heat Pump System (단독주택용 지열원 열펌프 시스템의 경제성 분석)

  • Sohn, Byong-Hu;Kang, Shin-Hyung;Lim, Hyo-Jae
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.31-37
    • /
    • 2007
  • Because of their low operating and maintaining costs, ground-source heat pump(GSHP) systems are an increasingly popular choice for providing heating, cooling and water heating to public and commercial buildings. Despite these advantages and the growing awareness, GSHP systems to residential sectors have not been adopted in Korea until recently. A feasibility study of a residential GSHP system was therefore conducted using the traditional life cycle cost(LCC) analysis within the current electricity price framework and potential scenarios of that framework. As a result, when the current residential electricity costs for running the GSHP system are applied, the GSHP system has weak competitiveness to conventional HV AC systems considered. However, when the operating costs are calculated in the modified price frameworks of electricity, the residential GSHP system has the lower LCC than the existing cooling and heating equipments. The calculation results also show that the residential GSHP system has lower annual prime energy consumption and total pollutant emissions than the alternative HVAC systems considered in this work.

  • PDF

Economic Analysis of a Residential Ground-Source Heat Pump System (단독주택용 지열원 열펌프 시스템 경제성 분석)

  • Sohn, Byong-Hu;Kang, Shin-Hyung;Lim, Hyo-Jae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.515-518
    • /
    • 2007
  • Because of their low operating and maintaining costs, ground-source heat pump(GSHP) systems are an increasingly popular choice for providing heating, cooling and water heating to public and commercial buildings. Despite these ad- vantages and the growing awareness, GSHP systems to residential sectors have not been adopted in Korea until recently. A feasibility study of a residential GSHP system was therefore conducted using the traditional life cycle cost(LCC) analysis within the current electricity price framework and potential scenarios of that framework. As a result, when the current residential electricity costs for running the GSHP system are applied, the GSHP system has weak competitiveness to conven- tional HVAC systems considered. However, when the operating costs are calculated in the modified price frameworks of electricity, the residential GSHP system has the lower LCC than the existing cooling and heating equipments. The calculation results also show that the residential GSHP system has lower annual prime energy consumption and total pollutant emissions than the alternative HVAC systems considered in this work.

  • PDF

PVT-GSHP System Economic Evaluation Study with IEA ECBCS Annex 54 Method (IEA ECBCS Annex 54 방법에 근거한 PVT-GSHP 시스템 경제성 평가 연구)

  • Pak, Jin-Woo;Kang, Eun-Chul;Lee, Euy-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.64-71
    • /
    • 2014
  • This study is to perform economic analysis of a PVT-GSHP (Photovoltaic Thermal-Ground Source Heat Pump) system compared to the conventional system which consists of a boiler and a chiller. This research has simulated, developed and analyzed four systems for application in a residential and an office building which was based on the hourly EPI (Energy Performance Index, $kWh/m^2yr$). Case 1 includes a boiler and a chiller to meet heating and cooling demands for a house. Case 2 is the same conventional system as Case 1 for a office. Case 3 is simple summation of Case 1 and 2. And Case 4 is utilizing a PVT-GSHP to meet the combined loads of the house and office. The economic evaluation study was based on IEA ECBCS Annex 54 subtasks C economic assessment methods. This study indicated that PVT-GSHP system can save a building's energy up to 53.9%. Also the SPB (Simple Payback) of the PVT-GSHP system with 0%, 50% initial incentive was 14.5, 6.7 year respectively.

Assessing the Economic and $CO_2$ Emission Reductions Viability of Domestic Ground-Source Heat Pumps (단독주택용 지열 열펌프 시스템의 경제성과 이산화탄소 배출 저감 가능성 평가)

  • Sohn, Byong-Hu;Kang, Shin-Hyung
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.64-69
    • /
    • 2009
  • Because of their low operating and maintaining costs, ground-source heat pump(GSHP) systems are an increasingly popular choice for providing heating, cooling and water heating to public and commercial buildings. Despite these advantages and the growing awareness, GSHP systems to residential sectors have not been adopted in Korea until recently. A feasibility study of a residential GSHP system was therefore conducted using the traditional life cycle cost(LCC) analysis within the current electricity price framework and potential scenarios of that framework. As a result, when the current residential electricity costs for running the GSHP system are applied, the GSHP system has weak competitiveness to conventional HVAC systems considered. However, when the operating costs are calculated in the modified price frameworks of electricity, the residential GSHP system has the lower LCC than the existing cooling and heating equipments. The calculation results also show that the residential GSHP system has lower annual prime energy consumption and total greenhouse gas emissions than the alternative HVAC systems considered in this work.

  • PDF

IEA ECBCS Annex 54 Economic Assessment Study of a Fuel Cell Integrated Ground Source Heat Pump Microgeneration System (연료전지 지열히트펌프 마이크로제너레이션 IEA ECBCS Annex 54 경제성 평가 연구)

  • Na, Sun-Ik;Kang, Eun-Chul;Lee, Euy-Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.5
    • /
    • pp.199-205
    • /
    • 2014
  • The integration of FC (Fuel Cell) and GSHP (Ground Source Heat Pump) hybrid system could produce a synergistic advantage in thermal and electric way. This study intends to analyse the economical aspect of a FC integrated GSHP hybrid system compared to the conventional system which is consisted with a boiler and a chiller. Based on the hourly simulation, the study indicated that GSHP system and FC+GSHP hybrid system could reduce the energy consumption on a building. The method of the economic assessment has been based on IEA ECBCS Annex 54 Subtask C SPB(Simple Payback) method. The SPB was calculated using the economic balanced year of the alternative system over the conventional (reference) system. The SPB of the alternative systems (GSHP and FC+GSHP) with 50% initial incentive was 4.06 and 26.73 year respectively while the SPB without initial incentive of systems was 10.71 and 57.76 year.

Cooling Performance of a Ground Source Heat Pump System (지열히트펌프시스템의 냉방운전에 따른 성능연구)

  • Lee, Jae-Keun;Jeong, Young-Man;Koo, Kyoung-Min;Hwang, Yu-Jin;Jang, Se-Yong;Kim, In-Kyu;Jin, Sim-Won;Lee, Dong-Hyuk
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.441-446
    • /
    • 2007
  • This present study is to evaluate the cooling performance of a water-to-refrigerant ground source heat pump system(GSHP) under actually operating condition. 1 unit is selected among 10 units of the GSHP in the building to analyze the performance. The average cooling COP of the GSHP at the part load of 64% is 8.2, overall system COP is 6.19. In the GSHP system, the cooling temperature of the condenser is lower compared to the air source heat pump system. Conclusively, the cooling performance of the GSHP is higher than the air source heat pump system by 80%.

  • PDF

Performance Prediction on the Application of a Ground-Source Heat Pump(GSHP) System in an Office Building (업무용 건물의 지열 히트펌프 시스템에 대한 성능 예측)

  • Sohn, Byonghu;Kwon, Han Sol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.9
    • /
    • pp.409-415
    • /
    • 2014
  • Ground-source heat pump (GSHP) systems have become an efficient alternative to conventional cooling and heating methods due to their higher energy efficiency. These systems use the ground as a heat source and the heat sink for cooling mode operation. The purpose of this simulation study is to evaluate the performance of a hypothetical GSHP system in an office building and to assess the energy saving effect against the existing HVAC systems (boiler and turbo chiller). We collected monthly energy consumption data from an actual office building ($32,488m^2$) in Seoul, and created a model to calculate the hourly building loads with EnergyPlus. In addition, we used GLD (Ground Loop Design) V8.0, a GSHP system design and simulation software tool, to evaluate hourly and monthly performance of the GSHP system. The energy consumption for the GSHP system based on the hourly simulation results were estimated to be 582.6 MWh/year for cooling and 593.2 MWh/year for heating, while those for the existing HVAC systems were found to be 674.5 MWh/year and 2,496.4 MWh/year, respectively. The seasonal performance factor (SPF) of the GSHP system was also calculated to be in the range of 3.37~4.28.

The feasibility study for the building integrated geothermal system using the horizontal heat exchanger (수평형 지중열교환기를 이용한 건물일체형 지열시스템의 도입타당성 분석)

  • Chae, Ho-Byung;Nam, Yujin;Yoon, Sung-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.81-87
    • /
    • 2015
  • Recently, in order to prevent increasing energy usages in the international community, many countries have attempted to develop the innovative renewable energy systems. Among the renewable energy systems, Ground source heat pump(GSHP) system which supply the heating, cooling and hot water in the building has been attracted by its stability of heat production and high efficiency. However, the initial drilling costs become very expensive and the construction period takes longer the other systems, because GSHP system needs more than 100 m depth drilling. In this study, in order to reduce initial costs of the GSHP, the building integrated geothermal system using the horizontal heat exchanger was developed. The heating and cooling load in the standard housing model was calculated by a simulation and the system design capacity in the high-rise apartment was decided by the total load. Based on the system design capacity, the high-rise apartments were applied to a BIGS and vertical GSHP system and there are analyzed about initial costs. In the result, the initial cost of BIGS could reduce 24% of the initial cost of the vertical GSHP system.

Life cycle cost analysis and smart operation mode of ground source heat pump system

  • Yoon, Seok;Lee, Seung-Rae
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.743-758
    • /
    • 2015
  • This paper presents an advanced life cycle cost (LCC) analysis of a ground source heat pump (GSHP) system and suggests a smart operation mode with a thermal performance test (TPT) and an energy pile system constructed on the site of the Incheon International Airport (IIA). First, an economic analysis of the GSHP system was conducted for the second passenger terminal of the IIA considering actual influencing factors such as government support and the residual value of the equipment. The analysis results showed that the economic efficiency of the GSHP system could be increased owing to several influential factors. Second, a multiple regression analysis was conducted using different independent variables in order to analyze the influence indices with regard to the LCC results. Every independent index, in this case the initial construction cost, lifespan of the equipment, discount rate and the amount of price inflation can affect the LCC results. Third, a GSHP system using an energy pile was installed on the site of the construction laboratory institute of the IIA. TPTs of W-shape and spiral-coil-type GHEs were conducted in continuous and intermittent operation modes, respectively, prior to system operation of the energy pile. A cooling GSHP system in the energy pile was operated in both the continuous and intermittent modes, and the LCC was calculated. Furthermore, the smart operation mode and LCC were analyzed considering the application of a thermal storage tank.