• Title/Summary/Keyword: GSH peroxidase

Search Result 404, Processing Time 0.019 seconds

STUDY ON THE ALTERATION OF GLUTATHIONE PEROXIDASE & CATALASE ACTIVITY IN PERIPHERAL BLOOD OF PERIODONTAL DISEASE PATIENTS (치주질환 환자의 말초혈액내 glutathione peroxidase와 catalase의 활성 변화에 관한 연구)

  • Kim, Byung-Ok;Kim, Chan-Jin;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.3
    • /
    • pp.529-538
    • /
    • 1995
  • It has been believed that the increased release of free oxygen radicals ($O_2^-,H_2O_2$, and $OH^-$) might be a factor in the pathogenesis of periodontal diseases. Antioxidant enzymes such as glutathione peroxidase(GSH-PX) and catalase can protect the tissue damage from the $H_2O_2$. In order to investigate the GSH-PX and catalase activity in the blood plasma and red blood cells(RBCs) of the patients with periodontitis, 19 patients who had good general health, attachment loss more than 6 mm and bone loss were selected as periodontitis group, 7 patients who had severely inflamed gingiva were selected as gingivitis group, and 15 volunteers with good general and periodontal health were selected as normal group. 17 of 26 patients were performed scaling and root planing to reduce the gingival inflammation for gingivitis and periodontitis groups, and were selected as posttreatment group. After blood plasma and RBCs were collected and separated 1 ml of peripheral blood from each subject, GSH-PX activity in blood plasma and RBCs was measured by the same method that Stefan et al. did, and catalase activity in RBCs was measured by the same method that Beers et al. did. The difference of GSH-PX and catalase activity between normal, gingivitis, and periodontitis groups was statistically analyzed by ANOVA with SPSS/PC+ program, and the difference between pretreatment and posttreatment groups was analyzed by Student t-test. The results were as follows : 1. GSH-PX activity in blood plasma was significantly lower in the gingivitis group($0.8683{\pm}0.0658$), periodontitis group($0.7130{\pm}0.1333$) than in the normal group($1.0241{\pm}0.0801$)(p<0.05), and GSH-PX activity in RBCs was significantly lower in the gingivitis groupt. $0.8156{\pm}0.1167$), periodontitis group($0.7533{\pm}0.1185$) than in the normal group($l.1963{\pm}0.2044$)(P<0.05), but there was no statistical significance in the difference of GSH-PX activity in RBCs between the gingivitis group and periodontitis group(p>0.05). 2. Catalase activity in RBCs was siginficantly lower in the periodontitis group($117.34{\pm}35.01$) than in the normal group($l52.38{\pm}32.09$)(p<0.05). 3. GSH-PX activity in blood plasma was significantly increased in the posttreatment groupe $1.0376{\pm}0.2820$) compared to the pretreatment group(0.7608 0.1600) (p<0.05), and GSH-PX activity in RBC was significantly increased in the posttreatment group($1.0421{\pm}0.2330$) compared to the pretreatment group($0.7728{\pm}0.1210$)(p<0.05). 4. There was no statistical significance in the difference of catalase activity in RBCs between the pretreatment group($112.04{\pm}43.65$) and posttreatment group($l33.41{\pm}39.16$)(p>0.05).The results, within the limits of the present experiment, suggest that the lowered activity of GSH-PX and catalase in blood plasma and RBCs may be related with periodontopathogenesis.

  • PDF

Reduction of Hepatic Glutathione by Acute Taurine Treatment in Male Mice (숫컷 생쥐에서 타우린 투여에 의한 간내 글루타치온의 감소)

  • 이선영;곽혜은;김영철
    • YAKHAK HOEJI
    • /
    • v.47 no.4
    • /
    • pp.218-223
    • /
    • 2003
  • Effect of taurine treatment on metabolism of glutathione (GSH) was studied in adult male ICR mice. An acute injection of taurine (250 mg/kg, ip) resulted in a significant decline of hepatic GSH level at t = 6 hr, but plasma GSH level was not altered. The activity of GSH-related enzyme in liver, such as GSH peroxidase, GSSG reductase, GSH S-transferases, ${\gamma}$-glutamylcysteine synthetase or ${\gamma}$-glutamyltranspeptidase, was not affected by taurine at t = 2.5 or 6 hr. Plasma cysteine and cystine levels were elevated rapidly following taurine treatment. Hepatic cysteine level was decreased by taurine, reaching a level approximately 70% of control at t = 4 and 6 hr. In conclusion, the results indicate that an acute dose of taurine decreases hepatic GSH level by reducing the availability of cysteine, an essential substrate for synthesis of this tripeptide in liver. It is also suggested that taurine may decrease the cysteine uptake by competing with this S-amino acid for a non-specific amino acid transporter.

Long-term Supplementation of Epimedium koreanum Nakai in Rats and Its Effects on In Vivo Antioxidant Status with Age

  • Lim, Heung-Bin;Lee, Dong-Wook
    • Food Science and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.404-408
    • /
    • 2007
  • In this study, we investigated the effects by age of long-tenn supplementation of Epimedium koreanum Nakai (EKN)-containing water on the in vivo antioxidant capacities of rats. All rats were reared in a conventional system, and none of the rats showed any signs of aversion to the EKN solution. Neither the mean nor maximum life spans of the rats were extended by long-tenn administration of the solution. The EKN extract caused decreases in the levels of serum thiobarbituric acid reactive substances in the rats. The activities of superoxide dismutase, catalase, and glutathione (GSH) peroxidase within the liver cytosol decreased with age in both the control and EKN-supplemented groups. GSH peroxidase activity, however, was higher at old age in the EKN-supplemented group. The activities of GSH reductase and GSH-S-transferase, and the levels of free-sulfhydryl (SH) and total-SH group gradually decreased with age in both groups. However, there was some tendency for higher levels in the EKN supplemented group at a corresponding age. These results indicate that long-tenn supplementation of EKN water extracts alone does not exhibit discernible adverse effects in rats, and has some enhancing effects on the antioxidant capacities of the blood and liver, but it does not have life-prolonging effects.

Effects of 2-Acetylaminofluorene Injection Time on the Hepatic Lipid Peroxide Metabolism and Cytochrome P450 Contents in Rats Fed Different Dietary Fats (쥐에서 2-Acetylaminofluorene의 투여시기에 따라 식이지방이 간의 지질과산화물 대사 및 Cytochrome P450 함량에 미치는 영향)

  • 유정순
    • Journal of Nutrition and Health
    • /
    • v.27 no.5
    • /
    • pp.442-450
    • /
    • 1994
  • The purpose of this study was to determine the effects of 2-AAF injection time on hepatic lipid peroxide metabolism and cytochrome P450 content in Sprague-Dawley rats fed diets containing high amounts of vegetable oils or animal fats(15%, w/w). Fifty mg of 2-AAF/kg of body weight/day was injected in PEG 300 intraperitonially for 3 consecutive days after 4 or 8 weeks to rats fed corn oil(CO) or lard(LA) diet. The contents of lipid peroxide and cytochrome P450, and the activities of superoxide dismutase(SOD), glutathione peroxidase(GSH-peroxidase) and glutathione S-transferase(GSH-S-transferase) were determined in hepatic microsomal or cytosolic fraction. Microsomal thiobarbituric acid reactive substances(TBARS) and cytochrome P450 contents increased in Co group injected 2-AAF after 4weeks. Cytosolic SOD activity increased in CO group injected 2-AAF after 4 weeks and in LA group injected 2-AAF after 4 or 8 weeks. Cytosolic GSH-S-transferase activity increased in LA group compared to CO group without 2-AAF injection. GSH-S-transferase activity increased in CO group injected 2-AAF after 4 or 8 weeks and in LA group injected 2-AAF after 4 weeks. Therefore, it may be suggested that 2-AAF injection increase the contents of lipid peroxide or cytochrome P450, and detoxifying enzyme activities in rats fed CO diet for short period and in rats fed LA diet for longer period.

  • PDF

Analysis on the substrate specificity and inhibition effect of Brassica oleracea glutathione S-Transferase (양배추 유래의 글루타티온 전달효소의 기질 특이성 및 저해 효과 분석)

  • Park, Hee-Joong;Lee, Hee-Jin;Kong, Kwang-Hoon
    • Analytical Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.228-234
    • /
    • 2009
  • To gain further insight into herbicide detoxification of plant, we purified a glutathione S-transferase from Brassica oleracea (BoGST) and studied its substrate specificity towards several xenobiotic compounds. The BoGST was purified to electrophoretic homogeneity with approximately 10% activity yield by DEAE-Sephacel and GSHSepharose column chromatography. The molecular weight of the BoGST was determined to be approximately 23,000 by SDS-polyacrylamide gel electrophoresis and 48,000 by gel chromatography, indicating a homodimeric structure. The activity of the BoGST was significantly inhibited by S-hexyl-GSH and S-(2,4-dinitrophenyl)GSH. The substrate specificity of the BoGST displayed high activities towards CDNB, a general GST substrate and ethacrynic acid. It also exhibited GSH peroxidase activity toward cumene hydroperoxide.

Alterations of Glutathione and Glutathione-Dependent Enzyme Activities by Monosodium-L-Glutamate in Rats with Carbon Tetrachloride-Induced Liver Damage (사염화탄소와 Monosodium-L-Glutamate 병용투여에 의한 간조직의 환원형글루타치온 함량 및 그의 관련효소활성의 변화)

  • 김형춘;이왕섭;전완주;김수희;주왕기
    • YAKHAK HOEJI
    • /
    • v.35 no.5
    • /
    • pp.384-388
    • /
    • 1991
  • To explore the effect of monosodium-L-glutamate(MSG) on CCI$_{4}$-damaged liver in Wister male rat, 5% MSG solution as drink water were administered after S.C. injection of 0.1 mg/kg CC1$_{4}$ twice a week for 4 weeks. After last administration of MSG, heptic glutathione(GSH) dependent system was assayed. It showed that MSG increased significanly hepatic glutathione(GSH) and glutathione peroxidase(GSH$_{px}$), but decreased glutathione-S-transferase(GST) acivity in normal rats. MSG increased significantly the GSH$_{px}$ and GST activities in rats with CCI$_{4}$-induced liver damage. These results indicate that decrease of GSH dependent systems in CC1$_{4}$ liver injury might be partially elevated by coadministration of MSG.

  • PDF

Effects of Regular Physical exercise Habits on the Activities of Erythrocyte Antioxidant Enzyme and Plasma Total Radical-trapping Antioxidant Potential in Health Male Subjects (규칙적인 운동습관이 남자 성인의 적혈구내 항산화효소활성과 혈장 항산화능력(TRAP)에 미치는 영향)

  • 강명희
    • Journal of Nutrition and Health
    • /
    • v.33 no.3
    • /
    • pp.289-295
    • /
    • 2000
  • In the present work we investigated the effect of regular physical exercise on the activities of erythrocyte antioxidant enzyme, plasma total radical-trapping antioxidant potential(TRAP) and plasma level of lipid peroxidation(malondialdehyde, MDA) in 64 healthy male, aged 34-67 years. The study population were divided in two groups: small amount of exerciser(exercise time less than 10min/d) and moderate amount of exerciser(exercise time more than 20min/d) according to their physical exercise habits measured by a questionnaire. Erythrocyte superoxide dismutase(SOD), glutathione peroxidase(GSH-Px) and catalase(CAT), plasma TRAP, as well as plasma MDA were determined. Erythrocyte GSH-Px and plasma TRAP were higher in moderate amount of exercisers than those in small amount of exercisers by 17% and 26%, respectively. No significant differences were observed in erythrocyte SOD, CAT and plasma MDA between the two groups. Mean exercise time was positively correlated with the erythrocyte GSH-Px activity and plasma TRAP significantly. The results would sugest that regular moderate exercise enhances antioxidant defences against reactive oxygen species and may increase the likelihood of a healthier life span.

  • PDF

Changes in the antioxidant enzyme activities of rock bream Oplrgnathus fasciatus administrated with Zn-supplemented diets (아연(Zn) 첨가사료의 투여에 따른 돌돔, Oplegnathus fasciatus의 항산화효소활성의 변화)

  • Kim, Young-Sug;Kang, Ju-Chan
    • Journal of fish pathology
    • /
    • v.25 no.1
    • /
    • pp.31-37
    • /
    • 2012
  • The objective of this study was to investigate the antioxidant enzyme (superoxide dismutase, SOD; glutathione, GSH; glutathione peroxidase, GPx) activities in liver and gill of rock bream, Oplegnathus fasciatus fed the experimental diets for 40 days. The experimental diets were prepared by adding with 30, 60 120 and 240 mg/kg to a commercial diet. In the liver, there were significant increases in SOD at 30~240 mg/kg. GPx activities of liver also were significantly increased at 30~120 mg/kg. The increased activities of SOD and GSH in the gills were observed in the 120 and 240 mg/kg, hence, GPx activity of gill exposed to lower concentrations of zinc (60~240 mg/kg) showed significant augmentation.

Antioxidant Enzymes in Relation to Oxidative Deterioration of Muscle Foods (근육식품에서 지방산화와 관련된 항산화 효소)

  • Lee, Sung-Ki
    • Food Science of Animal Resources
    • /
    • v.18 no.2
    • /
    • pp.97-106
    • /
    • 1998
  • Antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) are known to inhibit oxidative reactions by incativating compounds responsible for the formation of ree radicals. SOD transforms superoxide radical into hydrogen peroxide which is precursor to active free radicals. CAT reduces hydrogen peroxide to water. GSH-Px reduces hydroperoxides to corresponding alcohols. Antioxidant enzyme activities of muscle are different by animal species age, stress and exercise, muscle type and part, conditions of post mortem, storage and processing which are related to oxidative deterioration I muscle foods as well as oxidative defence in living systems. Antioxidant enzyme systems are enhanced rather than weakened in aging skeletal muscle. Red muscle contains higher antioxidant enzyme activity than white muscle. The antioxidant enzyme activities of poultry are higher in leg than in breast, and those of beef are higher in redder and more unstable muscles. It is clear that the effectiveness of the antioxidant enzyme in muscle foods seems to be influenced by meat processing operations. Both GSH-Px and CAT are inactivated by heat processing NaCl also influence the efficiency of the antioxident enzymes since its presence diminishes their catalyitc activity.

  • PDF

Excess Taurine Induced Placental Glutathione S-transferase Positive Foci Formation in Rat

  • Kweon, Sang-Hui;Kim, Yoon;Choi, Hay-Mie;Kwon, Woo-Jung;Chang, Kyung-Ja
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.469-475
    • /
    • 2000
  • The purpose of this study was to examine the chemopreventive potential of taurine at various levels on the diethylnitrosamine (DEN)·induced hepatocarcinogenesis. Male Sprague-Dawley rats were fed on diets containing 0, 1, 2, 3% taurine or 5% ${\beta}-alanine$ for taurine depletion. Then they were treated with DEN and 2/3 partial hepatectomy. The number of placental glutathione S-transferase positive ($GST-P^+$) foci, as a preneoplastic marker in the 1 % taurine group was lower than the control diet group. However the difference was insignificant. Although taurine diets reduced the thiobarbituric acid reactive substance (TBARS) level, the number of $GST-P^+$ foci was increased in 3% taurine diet group. The 1 % taurine diet increased the glutathione (GSH) level and GST activity, however they unfortunately did not suppress the foci formation. In the 3% taurine group, the GSH level and GSH peroxidase (GPx) activity were significantly decreased. Excess taurine supplementation of the pharmaceutical dose worked against hepatic chemoprevention, which might result from modulation of GPx activity and GSH utility. On the contrary, taurine might work as an antioxidant against TBARS production as the 1 % taurine diet increased GSH level. The potency of the cancer preventive effect of taurine still remains and further studies should investigate the effect of taurine with less than 1 % levels on the prevention of hepatic cancer.

  • PDF