• 제목/요약/키워드: GSH(glutathione)

검색결과 925건 처리시간 0.034초

Glutathione Reductase from Oryza sativa Increases Acquired Tolerance to Abiotic Stresses in a Genetically Modified Saccharomyces cerevisiae Strain

  • Kim, Il-Sup;Kim, Young-Saeng;Yoon, Ho-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권11호
    • /
    • pp.1557-1567
    • /
    • 2012
  • Glutathione reductase (GR, E.C. 1.6.4.2) is an important enzyme that reduces glutathione disulfide (GSSG) to a sulfydryl form (GSH) in the presence of an NADPH-dependent system. This is a critical antioxidant mechanism. Owing to the significance of GR, this enzyme has been examined in a number of animals, plants, and microbes. We performed a study to evaluate the molecular properties of GR (OsGR) from rice (Oryza sativa). To determine whether heterologous expression of OsGR can reduce the deleterious effects of unfavorable abiotic conditions, we constructed a transgenic Saccharomyces cerevisiae strain expressing the GR gene cloned into the yeast expression vector p426GPD. OsGR expression was confirmed by a semiquantitative reverse transcriptase polymerase chain reaction (semiquantitative RT-PCR) assay, Western-blotting, and a test for enzyme activity. OsGR expression increased the ability of the yeast cells to adapt and recover from $H_2O_2$-induced oxidative stress and various stimuli including heat shock and exposure to menadione, heavy metals (iron, zinc, copper, and cadmium), sodium dodecyl sulfate (SDS), ethanol, and sulfuric acid. However, augmented OsGR expression did not affect the yeast fermentation capacity owing to reduction of OsGR by multiple factors produced during the fermentation process. These results suggest that ectopic OsGR expression conferred acquired tolerance by improving cellular homeostasis and resistance against different stresses in the genetically modified yeast strain, but did not affect fermentation ability.

A 43 kD Protein Isolated from the Herb Cajanus indicus L Attenuates Sodium Fluoride-induced Hepatic and Renal Disorders in Vivo

  • Manna, Prasenjit;Sinha, Mahua;Sil, Parames C.
    • BMB Reports
    • /
    • 제40권3호
    • /
    • pp.382-395
    • /
    • 2007
  • The herb, Cajanus indicus L, is well known for its hepatoprotective action. A 43 kD protein has been isolated, purified and partially sequenced from the leaves of this herb. A number of in vivo and in vitro studies carried out in our laboratory suggest that this protein might be a major component responsible for the hepatoprotective action of the herb. Our successive studies have been designed to evaluate the potential efficacy of this protein in protecting the hepatic as well as renal tissues from the sodium fluoride (NaF) induced oxidative stress. The experimental groups of mice were exposed to NaF at a dose of 600 ppm through drinking water for one week. This exposure significantly altered the activities of the antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR) and the cellular metabolites such as reduced glutathione (GSH), oxidized glutathione (GSSG), total thiols, lipid peroxidation end products in liver and kidney compared to the normal mice. Intraperitoneal administration of the protein at a dose of 2 mg/kg body weight for seven days followed by NaF treatment (600 ppm for next seven days) normalized the activities of the hepato-renal antioxidant enzymes, the level of cellular metabolites and lipid peroxidation end products. Post treatment with the protein for four days showed that it could help recovering the damages after NaF administration. Time-course study suggests that the protein could stimulate the recovery of both the organs faster than natural process. Effects of a known antioxidant, vitamin E, and a non-relevant protein, bovine serum albumin (BSA) have been included in the study to validate the experimental data. Combining all, result suggests that NaF could induce severe oxidative stress both in the liver and kidney tissues in mice and the protein possessed the ability to attenuate that hepato-renal toxic effect of NaF probably via its antioxidant activity.

홍삼추출물 투여 후 Paraquat가 투여된 생쥐간에서 Glutathione과 Lipid Peroxidation에 미치는 항산화 효과 (Antioxidative Effects of Korean Red Ginseng Extracts on the Glutathione and Lipid Peroxidation in the Liver of Mouse Treated with Paraquat)

  • 이화재
    • 대한의생명과학회지
    • /
    • 제6권1호
    • /
    • pp.45-53
    • /
    • 2000
  • 본 연구결과에서 볼 때 paraquat독성 생존율 실험에서는 ascorbic acid가 우수하였고, 간조직 내 과산화수소 ($H_2O$$_2$)축적해소는 알콜추출물에서 우수하였으며, GPx활성도 수준은 홍삼지용성추출물과 ascorbic acid에서 우수하였다. 한편 GSH량은 증가되면서 GSSG량이 감소되는 glutathion 환원반응이 우수한 것은 ascorbic acid에서만이 확인되었다. 한편 생체 내 MDA량 감소는 홍삼수용성추출물과 ascorbic acid에서만 우수한 효능을 발휘하였다. 이 같은 실험 결과들로 미루어 볼 때 ascorbic acid가 항산화 효능이 있는 것은 본 실험에서 도 입증되고 있으며, 아울러 홍삼에서도 추출물마다 독특한 항산화 효능이 나타나고 있다.

  • PDF

Phaleria macrocarpa Suppresses Oxidative Stress in Alloxan-induced Diabetic Rats by Enhancing Hepatic Antioxidant Enzyme Activity

  • Triastuti, Asih;Park, Hee-Juhn;Choi, Jong-Won
    • Natural Product Sciences
    • /
    • 제15권1호
    • /
    • pp.37-43
    • /
    • 2009
  • Oxidative stress is caused by an imbalance between the production of reactive oxygen and an ability of a biological system, to readily detoxify the reactive intermediates or easily repair the resulting damage. It has been suggested that developmental alloxan-induced liver damage is mediated through increases in oxidative stress. The anti-diabetic effect and antioxidant activity of Phaleria macrocarpa (PM) fractions were investigated in alloxan-induced diabetic rats. After two weeks administration of PM, the liver antioxidant enzyme and hyperglycemic state were evaluated. The results showed that oral administration of PM treatments reduced blood glucose levels in diabetic rats by oral administration (P < 0.05). Serum glutamic-oxaloacetic transaminase (sGOT) and serum glutamic-pyruvate-transaminase (sGPT) were also diminished by PM supplementation. The superoxide dismutase (SOD), catalase (CAT) and glutathione-peroxidase (GPx) activities, and glutathione (GSH) level in the alloxan-induced diabetic rats were significantly decreased (P < 0.05) compared to those in the normal rats but were restored by PM treatments. PM fractions also repressed the level of malondialdehyde (MDA) in the liver. Glutathione reductase (GR), glutathione-S-transferase (GST) and $\gamma$-glutamylcysteine synthase (GCS) were also reduced in alloxan-induced diabetic rats. PM fractions could restore the GR and GST activities, but the GCS activity was not affected in rat livers. From the results of the present study, the diabetic effect of the butanol fraction of PM against alloxan-induced diabetic rats was concluded to be mediated either by preventing the decline of hepatic antioxidant status or due to its indirect radical scavenging capacity.

The Protective Effects of Isoflavone Extracted from Soybean Paste in Free Radical Initiator Treated Rats

  • Nam, Hye-Young;Min, Sang-Gi;Shin, Ho-Chul;Kim, Hwi-Yool;Fukushima, Michihiro;Han, Kyu-Ho;Park, Woo-Jun;Choi, Kang-Duk;Lee, Chi-Ho
    • Food Science and Biotechnology
    • /
    • 제14권5호
    • /
    • pp.586-592
    • /
    • 2005
  • This study was performed to investigate the antioxidant effects of Korean soybean paste extracts (SPE) on 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced liver damage in rats. Thirty healthy Sprague Dawley rats were selected and divided into 5 groups. Isoflavone contents were measured using HPLC technique. The antioxidant activity was measured in the plasma and liver of the rats with the following results. Levels of isoflavone in fermented soy paste, red pepper paste and soy sauce were 28.9, 30.3 and $3.4\;{\mu}g/g$ for daidzein and 244.3, 187.7 and $6.1\;{\mu}g/g$ for genistein, respectively. The activities of glutamate oxaloacetic transaminase (GOT) and glutamate pyruvate transaminase (GPT) were significantly higher in the AAPH-treated group in the SPE-AAPH group (p<0.05). The thiobarbituric acid reactive substance (TBARS) production was significantly increased in the AAPH-treated liver tissue (P<0.05). Glutathione peroxidase (GPx), glutathione reductase (GR) and catalase in the liver were significantly (p<0.05) decreased by AAPH administration. The glutathione (GSH) concentration was higher in the SPE-treated (Ed- confirm) group than in the control and other groups (p<0.05). These results suggest that SPE led to increased anti oxidative activities against AAPH-induced peroxyl radical.

Taurine Regulates Mitochondrial Function During 7,12-Dimethyl Benz[a]anthracene Induced Experimental Mammary Carcinogenesis

  • Vanitha, Manickam Kalappan;Priya, Kalpana Deepa;Baskaran, Kuppusamy;Periyasamy, Kuppusamy;Saravanan, Dhravidamani;Venkateswari, Ramachandran;Mani, Balasundaram Revathi;Ilakkia, Aruldass;Selvaraj, Sundaramoorthy;Menaka, Rajendran;Geetha, Mahendran;Rashanthy, Nadarajah;Anandakumar, Pandi;Sakthisekaran, Dhanapal
    • 대한약침학회지
    • /
    • 제18권3호
    • /
    • pp.68-74
    • /
    • 2015
  • Objectives: The present study was undertaken to determine the modulatory effect of taurine on the liver mitochondrial enzyme system with reference to mitochondrial lipid peroxidation (LPO), antioxidants, major tricarboxylic acid cycle enzymes, and electron transport chain enzymes during 7,12-dimethyl benz[a]anthracene (DMBA) induced breast cancer in Sprague-Dawley rats. Methods: Animals in which breast cancer had been induced by using DMBA (25 mg/kg body weight) showed an increase in mitochondrial LPO together with decreases in enzymic antioxidants (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST)), non-enzymic antioxidants (reduced glutathione (GSH), vitamin C, and vitamin E), in citric acid cycle enzymes (isocitrate dehydrogenase (ICDH), alpha ketoglutarate dehydrogenase (alpha KDH), succinate dehydrogenase (SDH) and malate dehydrogenase (MDH)), and in electron transport chain (ETC) complexes. Results: Taurine (100 mg/kg body weight) treatment decreased liver mitochondrial LPO and augmented the activities/levels of enzymic, and non-enzymic antioxidants, tricarboxylic acid cycle enzymes and ETC complexes. Conclusion: The results of our present study demonstrated the chemotherapeutic efficacy of taurine treatment for DMBA-induced breast carcinomas.

Isolation and Characterization of a Theta Glutathione S-transferase Gene from Panax ginseng Meyer

  • Kim, Yu-Jin;Lee, Ok-Ran;Lee, Sung-Young;Kim, Kyung-Tack;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제36권4호
    • /
    • pp.449-460
    • /
    • 2012
  • Plants have versatile detoxification systems to encounter the phytotoxicity of the wide range of natural and synthetic compounds present in the environment. Glutathione S-transferase (GST) is an enzyme that detoxifies natural and exogenous toxic compounds by conjugation with glutathione (GSH). Recently, several roles of GST giving stress tolerance in plants have demonstrated, but little is known about the role of ginseng GSTs. Therefore, this work aimed to provide further information on the GST gene present in Panax ginseng genome as well as its expression and function. A GST cDNA (PgGST) was isolated from P. ginseng cDNA library, and it showed the amino acid sequence similarity with theta type of GSTs. PgGST in ginseng plant was induced by exposure to metals, plant hormone, heavy metals, and high light irradiance. To improve the resistance against environmental stresses, full-length cDNA of PgGST was introduced into Nicotiana tabacum. Overexpression of PgGST led to twofold increase in GST-specific activity compared to the non-transgenic plants, and the GST overexpressed plant showed resistance against herbicide phosphinothricin. The results suggested that the PgGST isolated from ginseng might have a role in the protection mechanism against toxic materials such as heavy metals and herbicides.

인삼종자 초저온보존 후 Ascorbate 및 Glutathione의 산화환원 변화 (Effect of cryopreservation of ginseng (Panax ginseng C.A. Meyer) seeds on redox ratio of ascorbate and glutathione)

  • 백형진;이영이;윤문섭;송재영;코트날라 발라라주
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 춘계학술대회
    • /
    • pp.81-81
    • /
    • 2019
  • Ginseng seeds are one of short-lived seeds species which loose their viability easily in the condition of conventional storage. Cryopreservation using liquid nitrogen (LN) has been recommended as a alternative storage for this kind of germplasm short lived or dessiccation-sensitive. This study was performed to find out whether cryopreservation could affect physiological change such as enzyme activity induced by reactive oxygen species. In this work, the redox ratio of ascorbate and glutathione were examined onto ginseng seedlings before and after LN storage of seeds for 1 day using spectrophotometer method. Reduced ascorbate (ASA) was increased while oxidized ascorbate (DHA) was decreased slightly for both after 1d-LN storage. And for glutathione also, reduced form (GSH) was increased while oxidized form (GSSG) was decreased slightly for both after 1d-LN storage. Consequently total phenol compound and ion leakage after LN storage showed no significant differences. Additionally root growth from the seeds after LN storage was not affected by ultra low temperature. From the above results, we may suggest that cryopreservation could be recommended for storage tool of ginseng seeds even with low viability also and expected to make slower seed aging process during preservation period through further study.

  • PDF

Lymphocyte DNA damage and plasma antioxidant status in Korean subclinical hypertensive patients by glutathione S-transferase polymorphism

  • Han, Jeong-Hwa;Lee, Hye-Jin;Choi, Hee Jeong;Yun, Kyung Eun;Kang, Myung-Hee
    • Nutrition Research and Practice
    • /
    • 제11권3호
    • /
    • pp.214-222
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Glutathione S-transferase (GST) forms a multigene family of phase II detoxification enzymes which are involved in the detoxification of xenobiotics by conjugating substances with glutathione. The aim of this study is to assess the antioxidative status and the degree of DNA damage in the subclinical hypertensive patients in Korea using glutathione S-transferase polymorphisms. SUBJECTS/METHODS: We examined whether DNA damage and antioxidative status show a difference between GSTM1 or GSTT1 genotype in 227 newly diagnosed, untreated (systolic blood pressure $(BP){\geq}130mmHg$ or diastolic $BP{\geq}85mmHg$) subclinical hypertensive patients and 130 normotensive subjects (systolic BP < 120 mmHg and diastolic BP < 80 mmHg). From the blood of the subjects, the degree of the DNA damage in lymphocyte, the activities of erythrocyte superoxide dismutase, the catalase, and the glutathione peroxidase, the level of glutathione, plasma total radical-trapping antioxidant potential (TRAP), anti-oxidative vitamins, as well as plasma lipid profiles and conjugated diene (CD) were analyzed. RESULTS: Of the 227 subjects studied, 68.3% were GSTM1 null genotype and 66.5% were GSTT1 null genotype. GSTM1 null genotype had an increased risk of hypertension (OR: 2.104, CI: 1.38-3.35), but no significant association in GSTT1 null genotype (OR 0.982, CI: 0.62-1.55). No difference in erythrocyte activities of superoxide dismutase, catalase, or glutathione peroxidase, and plasma TRAP, CD, lipid profiles, and GSH levels were observed between GSTM1 or GSTT1 genotype. Plasma levels of ${\alpha}-tocopherol$ increased significantly in GSTT1 wild genotype (P < 0.05); however, plasma level of ${\beta}-carotene$ increased significantly in GSTT1 null genotype (P < 0.01). DNA damage assessed by the Comet assay was significantly higher in GSTM1 null genotype than wild genotype (P < 0.05). CONCLUSIONS: These results confirm the association between GSTM1 null genotype and risk of hypertension as they suggest that GSTM1 null genotype leads to an increased oxidative stress compared with wild genotype.

Vinyl Carbamate Epoxide와 2`-(4-Nitrophenoxy)oxirane으로 유발된 돌연변이에 대한 친핵성 물질 및 해독작용 효소에 의한 억제 (Inhibition of Vinyl Carbamate Epoxide- and 2`-(4-Nitrophenoxy)oxirane-induced Mutagenicity by Various Nucleophilic Compounds and Detoxifying Enzymes)

  • 박광균;이자현;김혜원;김종우;김윤수
    • 한국환경성돌연변이발암원학회지
    • /
    • 제17권2호
    • /
    • pp.97-108
    • /
    • 1997
  • The drugs or xenobiotics introduced to the body, are detoxified through the process of biotransformation in the body. In this process, most of the insoluble compounds become more polar, soluble and easily excretable. But, parts of introduced materials are metabolized to highly reactive electrophilic carcinogens through activation pathways. These metabolites are toxic and can react with DNA, RNA and proteins which are nucleophilic compounds. The objective of this study is to illustrate the aleactivation pathways of two highly reactive epoxide compounds, vinyl carbamate epoxide (VCO) and 2'-(4-nitrophenoxy)oxirane (NPO). They are the ultimate electrophilic carcinogens of ethyl carbamate(urethane) and 4-nitrophenyl vinyl ether, respectively. In this research, we studied the inhibition of the mutagenic activities of VCO or NPO by nuchieophiles [glutahione(GSH) and N-acetylcysteine(NAC)], detoxifying enzymes[epoxide hydrolase and glutathione-S-transferase(GST)] and intracellular organelles (microsomes and cytosol). In addition we also tested the suppression of DNA adducts formation by GSH and NAC. The results are summerized as follow. 1. The microsomes and cytosol which contain epoxide hydrolase and GST, respectively, decreased the mutagenicity of VCO (74% and 95%, respecfivel), and NPO (35% and 93%, respectively). The nucleophilic GSH and NAC decreased the mutagenicity by 86% (VCO) and 80% (NPO), 76% (VCO) and 40% (NPO), respectively. 2. The purified epoxide hydrolase decreased the mutagenicity of two epoxides in a dose-dependent manner, and GSH also decreased the mutagenicity in the presence of GST. 3. Formation of two DNA adducts, 7-(2'-oxoethyi)guanine (OEG) and N2,3-ethenoguanine(EG), were compared in the presence of calf thymus DNA and epoxide (VCO or NPO) in vitro system. The amounts of DNA adducts were decreased in the presence of GSH (25% and 29% in VCO, 32% and 29% in NPO), and NAC (14% and 16% in VCO, 21% and 11% in NPO), respectively. From these results, it is concluded that the ultimate carcinogenic metabolites, VCO and NPO, can be made in the body, but much of them may be inactivated and detoxified by the nucleophilic GSH, NAC and detoxifying enzymes (epoxide hydrolase and GST). Therefore, by these mechanism, the formation of DNA adducts and mutagenic activities of these two epoxides may be lowered in vivo.

  • PDF