• Title/Summary/Keyword: GSH(glutathione)

Search Result 927, Processing Time 0.022 seconds

Functional analysis of Tyr7 residue in human glutathione S-transferase P1-1 (Human glutathione S-transferase 중 tyrosine 7 잔기의 기능 분석)

  • Kong, Kwang-Hoon;Park, Hee-Joong;Yoon, Suck-Young;Cho, Sung-Hee
    • Analytical Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.378-385
    • /
    • 1997
  • In order to clarify the functional role of Tyr7 in human glutathione S-transferase P1-1, we extensively investigated the effect of mutation of Tyr7 on the substrate specificity and inhibition characteristics. The mutational replacement of Tyr7 with phenylalanine lowered the specific activities with 1,2-dichloro-4-nitrobenzene and 1,2-epoxy-3-(p-nitrophenoxy) propane for GSH-conjugation reaction to 3~5% of the values for the wild-type enzyme. The pKa of the thiol group of GSH bound in Y7F was about 2.4 pK units higher than that in the wild-type enzyme. The $I_{50}$ of hematin for Y7F was similar to that for the wild-type enzyme and those of benastatin A and S-(2,4-dinitrophenyl)glutathione were only moderately decreased. These results suggest that Tyr7 is considered to be important the catalytic activities not only for GSH-chloronitrobenzene derivatives but also for GSH-epoxide conjugation reaction, rather than to binding of the substrates.

  • PDF

Cloning of Genes for the Biosynthesis of Glutathione from E. coIi K-12 (E.coli K-12 균주로부터 글루타치온 합성 유전자의 클로닝)

  • 남용석;박영인;이세영
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.6
    • /
    • pp.575-582
    • /
    • 1991
  • To increase the production of glutathione by the expression of recombinant gsh plasmids, two genes responsible for the biosynthesis of glutathione were isolated and cloned. To clone a gshI gene, the GS903 mutant strain, which is deficient in $\gamma$-glutamylcysteine synthetase activity, has been raised. A gshI gene was cloned using pBR322 plasmid as a 3.6 Kb PstI DNA fragment isolated from E. coli K-12 chromosomal DNA. Also a gshIl gene was cloned using pUC13 plasmid as a 2.2 Kb PstI-BamHI DNA fragment. To study the effects of plasmid copy number and passenger DNA size on the expression levels of the gsh genes, various recombinant plasmids containing different sets of genes were constructed. The expression levels of the gsh genes were increased approximately twice higher in pUC series plasmids than that in pBR322 plasmid. But the sizes of the passenger DNA containing the gsh genes in the vector plasmid did not affect on the expression levels of the gsh genes.

  • PDF

Separation of Glutathione by Ion Exchange Chromatography (이온교환 크로마토그래픽을 이용한 Glutathione 분리)

  • 김정훈;손영종;구윤모
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.77-82
    • /
    • 1998
  • Glutathione(L-$\gamma$ -glutamyl-L-cysteinylglycine, GSH) produced by microbial enzymes was separated by a liquid chromatography. In order to select a resin which would bind GSH efficiently, a batch adsorption experiment was carried out with GSH solution and various resins at pH 8.0 GSH bound to Q-sepharose and QAE-sephadex among anion exchange resins, but the latter was found not to be suitable because of the reduction of resin volume at high salt concentration. Preliminary experiments using a standard solution were carried out to separate GSH. GSH and $\gamma$ -glutamylcysteine were separated from the other constituents by applying step gradient of salt(NaCl) concentration. GSH was successfully separated from $\gamma$ -glutamylcysteine by applying Tris buffer containing 35mM NaCl. Chromatographic separation behaviors for the enzymatic product was similar to that for the standard solution. Separation yields of GSH from the standard solution and enzymatic product solution were 72.6% and 84.4%, respectively.

  • PDF

MOLECULAR BREEDING OF GLUTATHIONE PRODUCING BACTERIAL STRAINS

  • Nam Yong-Suk;Lee Se Yong
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 1991.04a
    • /
    • pp.237-242
    • /
    • 1991
  • In order to increase the production of glutathione by maximizing the expression of recombinant gsh plasmids, two genes responsible for the biosynthesis of glutathione were cloned. A gshI gene was cloned onto pBR322 plasmid as 3.6Kb PstI DNA fragment from E. coli K-12 chromosomal DNA. Also gshII gene was cloned onto pUC13 plasmid as 2.2Kb PstI-BamHI DNA fragment. In order to improve the glutathione producing activity more efficiently, various recombinant plasmids containing tandem repeated gshI genes or both genes in various copy number onto the same vector were constructed. E. coli cells harboring pGH501 plasmid (pUC8-gshI$\cdot$I$\cdot$II) showed the highest glutathione synthesizing activity. The conditions for glutathione production with an ATP-generating system such as acetate kinase reaction of E. coli cells or glycolytic pathway of yeast cells were examined using the E. coli cells harboring the pGH501 plasmid. When the acetate kinase reaction of E. coli cells was used as an ATP generating system, 20mM of L-csteine was converted into glutathione with a yield of $100\%$.

  • PDF

Effects of Hydroxybrazilin on Glutathione Depletion Induced by $\textrm{BrCCl}_3$ and Menadione in Cultured Rat Hepatocytes

  • Chang, Eun-Sook;Kim, Seong-Gon;Khil, Lee-Yong;So, Dhong-Su;Chang, Tong-Shin;Kim, Jin-Hyoung;Jeon, Sun-Duck;Moon, Chang-Kiu;Park, Kwang-Sik
    • Environmental Analysis Health and Toxicology
    • /
    • v.11 no.3_4
    • /
    • pp.53-57
    • /
    • 1996
  • In this study we investigated the effect of hydroxybrazilin on glutathione depletion induced by BrCCl$_3$ and menadione in cultured hepatocytes to understand the cellular mechanisms of hepatoprotective effect of hydroxybrazilin. Hydroxybrazilin alone had no effect on total glutathione level and the ratio of reduced glutathione/total glutathione (GSH/(GSSG+GSH)). BrCCl$_3$ dramatically decreased total glutathione level and hydroxybrazilin significantly prevented glutathion depletion by BrCCl$_3$. The ratio of GSH/(GSSG+ GSH) was also decreased by BrCCl$_3$ and recovered by hydroxybrazilin treatment. Menadione decreased total glutathione level and the ratio of GSH/(GSSG+GSH) but hydroxybrazilin showed no significant effects on menadione-induced glutathione depletion. These data suggest that hydroxybrazilin might prevent the hepatotoxicity induced by chemicalderived radicals but not the toxicity linked with oxidative stress.

  • PDF

Measuring Glutathione Regeneration Capacity in Stem Cells

  • Jihye Kim;Yi-Xi Gong;Eui Man Jeong
    • International Journal of Stem Cells
    • /
    • v.16 no.3
    • /
    • pp.356-362
    • /
    • 2023
  • Glutathione (GSH) is a chief cellular antioxidant, affecting stem cell functions. The cellular GSH level is dynamically altered by the redox buffering system and transcription factors, including NRF2. Additionally, GSH is differentially regulated in each organelle. We previously reported a protocol for monitoring the real-time GSH levels in live stem cells using the reversible GSH sensor FreSHtracer. However, GSH-based stem cell analysis needs be comprehensive and organelle-specific. Hence, in this study, we demonstrate a detailed protocol to measure the GSH regeneration capacity (GRC) in living stem cells by measuring the intensities of the FreSHtracer and the mitochondrial GSH sensor MitoFreSHtracer using a high-content screening confocal microscope. This protocol typically analyses the GRC in approximately 4 h following the seeding of the cells onto plates. This protocol is simple and quantitative. With some minor modifications, it can be employed flexibly to measure the GRC for the whole-cell area or just the mitochondria in all adherent mammalian stem cells.

Effects of Constituent Amino Acids of Glutathione and Ammonium Sulfate added to Hydroponic Solution on the Synthesis of Glutathione in Lettuce

  • Kim Ju-Sung;Seo Sang-Gyu;Kim Sun-Hyung;Usui Kenji;Shim Le-Sung
    • Journal of Plant Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.195-202
    • /
    • 2005
  • The effects of constituent amino acids of glutathione (GSH), glutamate (Glu), cysteine (Cys) and glycine (Gly), on GSH synthesis in lettuce seedlings were examined in this study. The GSH concentration of the seedlings was increased to 5.1-fold and 1.6-fold the concentration of the control in the first leaves and roots, respectively, by simultaneous application of these constituent amino acids (Glu+Cys+Gly) at 100 mg/l to the culture solution for two days. In the first leaves and roots of these seedlings, the concentration of GSH was 180.4 and 14.6 nmole/gFW, and non-essential amino acids including Glu, Cys and Gly occupied 93.2% and 84.0% of the total free amino acids, respectively. Application of Cys greatly increased the concentration of GSH in the roots, and application of 50 mg/l Cys increased it to 26.1-fold the concentration in the control. The activity of GSH synthetase was higher in the leaves than in the roots, whereas the activity of ${\gamma}$-glutamylcysteine synthetase was higher in the roots than in the leaves.

Reduction of Hepatic Glutathione by Acute Taurine Treatment in Male Mice (숫컷 생쥐에서 타우린 투여에 의한 간내 글루타치온의 감소)

  • 이선영;곽혜은;김영철
    • YAKHAK HOEJI
    • /
    • v.47 no.4
    • /
    • pp.218-223
    • /
    • 2003
  • Effect of taurine treatment on metabolism of glutathione (GSH) was studied in adult male ICR mice. An acute injection of taurine (250 mg/kg, ip) resulted in a significant decline of hepatic GSH level at t = 6 hr, but plasma GSH level was not altered. The activity of GSH-related enzyme in liver, such as GSH peroxidase, GSSG reductase, GSH S-transferases, ${\gamma}$-glutamylcysteine synthetase or ${\gamma}$-glutamyltranspeptidase, was not affected by taurine at t = 2.5 or 6 hr. Plasma cysteine and cystine levels were elevated rapidly following taurine treatment. Hepatic cysteine level was decreased by taurine, reaching a level approximately 70% of control at t = 4 and 6 hr. In conclusion, the results indicate that an acute dose of taurine decreases hepatic GSH level by reducing the availability of cysteine, an essential substrate for synthesis of this tripeptide in liver. It is also suggested that taurine may decrease the cysteine uptake by competing with this S-amino acid for a non-specific amino acid transporter.

Potential for Efficient Synthesis of GSH Utilizing GCS1 and GLR1 Mutant Strains of Candida albicans

  • Jaeyoung SON;Min-Kyu KWAK
    • The Korean Journal of Food & Health Convergence
    • /
    • v.10 no.2
    • /
    • pp.7-11
    • /
    • 2024
  • Glutathione (GSH) is a vital compound composed of glutamic acid, cysteine, and glycine, crucial for cellular functions including oxidative stress defense and detoxification. It has widespread applications in pharmaceuticals, cosmetics, and food industries due to its antioxidant properties and immune system support. Two primary methods for GSH synthesis are enzymatic and microbial fermentation. Enzymatic synthesis is efficient but costly, while microbial fermentation, particularly using yeast strains like Candida albicans, offers a cost-effective alternative. This study focuses on genetically modifying C. albicans mutants, specifically targeting glutathione reductase (GLR1) and gamma-glutamylcysteine synthetase (GCS1) genes, integral to GSH synthesis. By optimizing these mutants, the research aims to develop a model for efficient GSH production, potentially expanding its applications in the food industry.

Roles of Glutathione Reductase and $\gamma$-Glutamylcysteine Synthetase in Candida albicans

  • Baek, Yong-Un;Yim, Hyung-Soon;Kang, Sa-Ouk
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.61-61
    • /
    • 2003
  • We have cloned the CGR1 gene encoding glutathione reductase (GR) which catalyzes the reduction of oxidized glutathione (GSSG) to reduced glutathione (GSH) from Candida albicans. The cgr1/cgr1 mutants were not viable when CaMAL2 promoter repressed the CGR1 expression. The growth of the mutants could be partially overcome by thiol compounds such as GSH, dithiothreitol, cysteine, N-acetylcysteine and GSSG. Interestingly, C. albicans with CGR1 overexpressed showed defective hyphal growth on solid medium and attenuated virulence. We have also cloned the GCS1 gene encoding ${\gamma}$-glutamylcysteine synthetase which catalyzes the first step of glutathione biosynthesis. The gcs1/gcs1 mutants were nonviable in minimal defined medium. The growth of the mutants could be resumed by supplementing with GSH, GSSG and ${\gamma}$-glutamylcysteine in the medium. The mutants had increased intracellular D-erythroascorbic acid level up to 2.25-fold when transferred to GSH-free medium. When the mutants were depleted of GSH, they showed typical markers of apoptosis. In conclusion, these results suggest that glutathione is an essential metabolite, and involved in hyphal growth, virulence and apoptosis in C. albicans.

  • PDF