• Title/Summary/Keyword: GRS walls

Search Result 10, Processing Time 0.028 seconds

A 12-year long-term study on the external deformation behavior of Geosynthetic Reinforced Soil (GRS) walls

  • Won, Myoung-Soo;Lee, O-Hyeon;Kim, You-Seong;Choi, Se-Kyung
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.565-575
    • /
    • 2016
  • Geosynthetics reinforced soil (GRS) walls constructed on weak grounds may change in both the horizontal earth pressure and deformation on wall facing. However, only few studies were done in the literature to measure and analyze the horizontal external deformation behavior of GRS walls constructed on soft grounds for a long period of time. The present study describes the external deformation behavior of GRS walls observed for 12-year long-term performance. The horizontal deformation of the geosynthetics-wrapped-facing GRS walls shows a passive behavior along one third of the wall height, from top going downwards, and active behavior for the rest of the wall height. Even if the geogrid and nonwoven geotextiles are exposed directly to sunlight and rainfalls in a span of 12 years, they have functioned well as wall facing. Therefore, the geosynthetic reinforcement material is strong enough to resist ultraviolet rays.

Long Term Behaviors of Geosynthetics Reinforced Soil Walls (보강토옹벽의 장기거동분석에 관한 연구)

  • Won, Myoung-Soo;Lee, Yong-An;Kim, You-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.33-42
    • /
    • 2006
  • Geosynthetics reinforced soil (GRS) walls with a flexible wall face allow deformation. GRS walls constructed on the weak ground change in both horizontal earth pressures on wall faces and the tensile stress of geosynthetics, affecting the backfill in time until the deformation of the backfill and the foundation is completed. However, there are few studies that were done to measure and analyze the horizontal earth pressures and geosynthetics deformation on GRS walls constructed on the soft ground for a long period of time. Two field GRS walls in this study are constructed on a shallow layer of a weak foundation to measure and analyze geostynthetics deformation, horizontal earth pressures, and pore water pressures for the duration of approximately 16 months. Strain gauges are used to measure geosynthetics deformation; this study specifically suggests a new method of measuring nonwoven geotextile using strain gauges. Most geosynthetics deformation occurred within a month after the construction of GRS walls. The maximum deformation measured for approximately 16 months appeared as follows: nowoven geotextile: 6.05%, woven geotextile: 2.92%, and geogrid: 2.33%. Pore water pressures on the GRS wall can be ignored; however, horizontal earth pressures on the bottom and the upper part of the wall face appear larger than earth pressures at rest.

Integral Bridge System with Geosynthetic-Reinforced Backfill

  • Tatsuoka, Fumio
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.39-52
    • /
    • 2007
  • A new type bridge combining an integral bridge and a pair of geosynthetic-reinforced soil (GRS) retaining walls having full-height rigid (FHR) facings, called the GRS integral bridge, is proposed. The geosynthetic reinforcement layers are connected to the FHR facings (i.e., RC parapets) that are integrated with a girder without using any girder-support. GRS integral bridges are basically much more cost-effective in construction and long-term maintenance while having a much higher seismic stability than conventional-type bridges having a girder via movable and fixed supports on a pair of cantilever abutments. GRS integral bridges are better than bridges using GRS retaining walls as abutments and also than conventional integral bridges with unreinforced backfill. To validate the above, a series of static cyclic lateral loading tests of the facing and a series of shaking table tests were performed on smallscaled models of different bridge types.

  • PDF

A Case Study on the Restoration of Collapsed Geosynthetics Reinforced Soil Wall Using Limit Equilibrium and Numerical Analyses (한계평형해석과 수치해석에 의한 붕괴된 보강토 옹벽 복구 사례에 관한 연구)

  • Won, Myoung-Soo;Kim, Hyeong-Joo;Kim, Young-Shin;Choi, Jeong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.107-118
    • /
    • 2013
  • Geosynthetic reinforced soil (GRS) walls have been increasingly applied recently due to its numerous geotechnical engineering applications. However failure occurs in some cases of constructed GRS walls. These GRS wall failures are mostly due to the unpredictable characteristics of intensive rainfall. Hence, the need for new and innovative ideas for rehabilitation methods has been getting attention. This paper introduces a case study for the design and restoration method of collapsed GRS wall using Limit equilibrium and Numerical Analyses. Restoration method includes: (1) soil nailing without backfill excavation and (2) reconstruction with GRS wall after collapsed backfill excavation. Analyses results show minimal horizontal displacements and shear strain on the reinforced concrete facing for the restoration case with soil nailing. On the other hand, horizontal displacements are developed in the middle of the mortar block facing and shear strains are developed at the bottom facing with spiral curves for the reconstructed GRS wall after collapsed backfill excavation. Therefore, the collapsed GRS wall was restored with the soil nailing without backfill excavation and its construction procedures are discussed in this paper.

A Study on the Effect of Facing System and Staged Construction Procedures in GRS Walls for Application in Railroad Structures (철도구조물 적용을 위한 보강토옹벽 벽체시스템과 단계시공의 효과에 관한 연구)

  • Won, Myoung-Soo;Kwon, Oh-Hyun;Kim, Young-Shin;Bang, Yoon-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.359-366
    • /
    • 2009
  • The present paper analyzes and discusses the effect of facing system and staged construction in GRS (geosynethetic reinforced soil) walls for railway structures throughout various case analyses. The result shows that postconstruction facing system by staged construction procedures is more advantageous for railway structure construction than preconstruction and simultaneous construction facing system with reinforced soil.

  • PDF

Experimental Study on the application of reinforced retaining walls to the railroad (보강토 옹벽의 철도 구조물 적용에 관한 실험적 연구)

  • Kim Yong-Jun;Kim Jun-Young;Kim Kyung-Taek;Yeom Hyeong-Jin
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1020-1025
    • /
    • 2004
  • This research reviews the characteristics of earth pressure incurred by GRS-RW mainly used in the railroad design in order to resist large lateral load caused by train and additional load induced by facilities such as noise barrier fences, electric poles, etc. The results of test shows the existence of arching effect that horizontal earth pressure increases in the backfill while earth pressure applying to the wall reduced under GRS-RW system. In both cases, unreinforced wall and GRS-RW system, the coefficient of earth pressure (K) is about 0.4 at the rest. However, after lateral displacement occurs, the earth pressure nearly reduce down to zero under GRS-RW system while the earth pressure decreases up to 0.12 in case of unreinforced retaining wall.

  • PDF

Measurement of Nonwoven Geotextile Deformation with Strain Gauges (스트레인 게이지를 이용한 부직포의 변형거동 계측)

  • Won, Myoung-Soo;Lee, Yong-An;Ko, Hyoung-Woo;Kim, You-Seong;Park, Byung-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.96-102
    • /
    • 2006
  • Because of the increasing need to use clayey soil as the backfill in reinforced soil structures and embankment material, nonwoven geotextiles with the drain capability have been receiving much attention. However, there are few studies of the deformation behavior of nonwoven geotextiles at geosynthetics reinforced soil structures in the field because the nonwoven geotextile, which has low tensile stiffness and higher deformability than geogrids and woven geotextiles, is difficult to measure its deformation by strain gauges and to prevent the water from infiltrating. This study proposes a new, more convenient method to measure the deformation behaviour of nonwoven geotextile by using a strain gauge; and examines the availability of the method by conducting laboratory tests and by applying it on two geosynthetics reinforced soil (GRS) walls in the field. A wide-width tensile test conducted under confining pressure of 7kPa showed that the local deformation of nonwoven geotextile measured with strain gauges has a similar pattern to the total deformation measured with LVDT. In the field GRS walls, nonwoven geotextile showed a larger deformation range than the woven geotextile and geogrid; however, the deformation patterns of these three reinforcement materials were similar. The function of strain gauges attached to nonwoven geotextile in the walls works normally for 16 months. Therefore, the method proposed in this study for measuring nonwoven geotextile deformation by using a strain gauge proved useful.

  • PDF

A Study of the Measurement of Nonwoven Geotextile Deformation with Strain Gauges (스트레인 게이지를 이용한 부직포의 변형거동 계측에 관한 연구)

  • Won, Myoung-Soo;Kim, You-Seong;Kim, Hyeong-Joo;Park, Byung-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.25-32
    • /
    • 2007
  • Because of the increasing use of clayey soil as the backfill in reinfurced soil structures and embankments, nonwoven geotextiles of drain capability have been receiving much attention. However, there are few studies on the deformation behavior analysis of nonwoven geotextiles in reinforced soil structures in the site because nonwoven geotextiles which have low tensile stiffness and higher deformability than geogrids and woven geotextiles, are difficult to measure their deformation by using strain gauges. In this study, it was suggested that a new and more convenient method could measure the deformation behaviour of nonwoven geotextile using a strain gauge and examine the availability of the method by conducting laboratory tests and applying to two geosynthetics reinforced soil (GRS) walls in the site. The result of wide-width tensile test conducted under confining pressure of 70 kPa shows that the local deformation of nonwoven geotextile to be measured with strain gauges has a similar pattern to the total deformation measured with LVDT. In the GRS walls, nonwoven geotextile shows a larger deformation range than the woven geotextile and geogrid. However, the deformation patterns of these three reinforcement materials are similar. The function of strain gauges attached to nonwoven geotextile in the walls works normally for 16 months. Therefore, the method proposed in this study for measuring nonwoven geotextile deformation using a strain gauge has proved useful.

A Study on the Advantage with Staged Construction Procedures and Full-Height Rigid Facing of Geosynthetic Reinforced Soil Retaining Walls (보강토옹벽에서 단계시공과 일체형 강성벽체의 이점에 관한 연구)

  • Won, Myoung-Soo;Kim, You-Seong;Tatsuoka, Fumio
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.3
    • /
    • pp.17-23
    • /
    • 2007
  • To construct an ideal geosynthetic reinforced soil retaining wall (GRS-RW), the facing of the wall should be flexible enough to accommodate a large deformation of the supporting ground and to develop the large tensile force in reinforcements during wall construction as long as the stability is ensured, but should be rigid enough to be stiff and stable as well as durable and aesthetically acceptable for a long life time when the wall is in service. Facing conditions during the construction and service of the wall are quite different. So it is difficult to be satisfied all these conditions with the current construction method which is mainly used in reinforced wall construction in Korea. Most of this contradiction could be solved by the staged construction procedure. According to the results of cases and references analyses, stage construction procedures make it possible to accommodate large deformation of the supporting ground and backfill without losing the stability of the wall, and to derive the tensile strength of reinforcement causing deformation of the facing. When the facing is a full-height rigid one, it also appeared almost impossible to occur a local shear failure of the active zone, and pull-out failure of reinforcements. Therefore, GRS-RWs having a full-height rigid facing have been constructed by the staged construction procedures that matched well with the theory of reinforced soil, which had outstanding stability and durability, and thus could be used for railways and bridge abutments in Korea in the future.

  • PDF

Ground-based model study for spaceflight experiments under microgravity environments on thermo-solutal convection during physical vapor transport of mercurous chloride

  • Choi, Jeong-Gil;Lee, Kyong-Hwan;Kim, Geug-Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.256-263
    • /
    • 2007
  • For $P_B=50Torr,\;P_T=5401Torr,\;T_S=450^{\circ}C,\;{\Delta}T=20K$, Ar=5, Pr=3.34, Le=0.01, Pe=4.16, Cv=1.05, adiabatic and linear thermal profiles at walls, the intensity of solutal convection (solutal Grashof number $Grs=7.86{\times}10^6$) is greater than that of thermal convection (thermal Grashof number $Grt=4.83{\times}10^5$) by one order of magnitude, which is based on the solutally buoyancy-driven convection due to the disparity in the molecular weights of the component A ($Hg_2Cl_2$) and B (He). With increasing the partial pressure of component B from 20 up to 800 Torr, the rate is decreased exponentially. It is also interesting that as the partial pressure of component B is increased by a factor of 2, the rate is approximately reduced by a half. For systems under consideration, the rate increases linearly and directly with the dimensionless Peclet number which reflects the intensity of condensation and sublimation at the crystal and source region. The convective transport decreases with lower g level and is changed to the diffusive mode at $0.1g_0$. In other words, for regions in which the g level is $0.1g_0$ or less, the diffusion-driven convection results in a parabolic velocity profile and a recirculating cell is not likely to occur. Therefore a gravitational acceleration level of less than $0.1g_0$ can be adequate to ensure purely diffusive transport.