• Title/Summary/Keyword: GROWTH DENSITY

Search Result 3,770, Processing Time 0.032 seconds

Evaluation of Growth of Groundcovers as Affected by Planting Densities under the Roadside Trees (가로수 하부의 식재밀도에 따른 지피초화류의 생육 평가)

  • Yoon, Yong Han;Lee, Sun Yeong;Ju, Jin Hee
    • Journal of Environmental Science International
    • /
    • v.31 no.6
    • /
    • pp.471-477
    • /
    • 2022
  • This field experiment aimed to identify the optimal planting density for establishing a management plan for ground-cover plants under roadside trees. Liriope platyphylla and Hosta longipes both widely used for planting under trees were selected as the plant materials and planted under Prunus serrulata var. spontanea at different planting densities. Based on the distance between each plant, 4 planting densities were used: 11%, 25%, 49%, and 83% with three replications. To estimate plant growth, plant height, number of leaves and tillers, fresh and dry weight, and visual quality were investigated. Liriope platyphylla exhibited relatively better growth at the highest planting density of 83%. For Hosta longipes, however, the lower growth was positively correlated with high planting density. Therefore, the optimal planting density for Liriope platyphylla is 83% and for Hosta longipes is 11%.

A Study of Vision Algorithm Development for Growth Monitoring of Potato Microtubers (인공씨감자 생육상태 모니터링을 위한 화상처리 알고리즘 개발에 관한 연구)

  • Choi, J.W.;Chung, G.J.;Lim, S.J.;Choi, S.L.;Chung, H.;Nam, H.W.
    • Journal of Biosystems Engineering
    • /
    • v.23 no.4
    • /
    • pp.373-380
    • /
    • 1998
  • The contribution of this paper is to provide the methods for the production automation of potato microtuber using the vision process in growth monitoring. The first method deals with computation for the growth density in the primary growth process. The second method addresses cognition process to identify the number and the volume of potato microtuber in secondary growth process. The third is to decide whether potato microtubers are infected by a virus or bacteria in growth process. The computation for the growth density in the primary growth process uses the method of Labeling. The second and third methods use template matching based on color patterns. With the developed method using vision process, this experiment is capable of discriminating weekly growth-rate in primary growth process, 85% cognition rate in secondary process and identifying whether there are infections. Therefore, we conclude that our experimental results are capable of growth monitoring for mass production of potato microtubers.

  • PDF

Comparison of Marine Microalgae Growth Using LED Lights (LED광원을 이용한 해양미세조류의 성장 비교)

  • KANG, Man-Gu;LIM, Su Yeon;LEE, Chang-Hyeok;BAEK, Hyang Ran;SHIN, Jong-Ahm
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.2
    • /
    • pp.552-559
    • /
    • 2017
  • To assess the effect of LED lights on marine microalgae growth in the laboatory, Tetraselmis suecica, Chaetoceros simplex and Isochrysis galbana were cultured under $20{\pm}1^{\circ}C$, Walne's medium and aeration using 3.6 L glass vessels. The LED light sources were Blue, Red, Blue+Red, CoolWhite and WarmWhite. The experiments were conducted three times. The density of microalgae was shown as the counted number of cells per day, and the specific growth rate was calculated by using the density. The statistical analysis was performed by analysis of variance using the SPSS 20.0 program. T. suecica culture was the highest density under the Blue LED light source, so the light source was the most effective for the growth of this alga. C. simplex and I. galbana culture had the highest density under the Blue+Red LED light source, therefore this light source was the most effective for the growth of these algae. The result of analysis of variance showed significant between groups.

Growth and Survival Rate on Density of Haliotis discus hannai in Cnge Culture (해상가두리에서 참전복 (Haliofis discus hannai)의 사육밀도에 따른 성장과 생존율)

  • YOON Ho Seop;RHA Sung Ju;CHA Yong Back;CHO Ju Hyun;KIM Ki Young;CHOI Sang Duk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.4
    • /
    • pp.287-294
    • /
    • 2004
  • Effect of growth and survival rate on different densities in the cage culture of juvenile abalone (Haliotis discus hannai) were determined in Myoduri Yeosu, Jeollanamdo from April 2000 to April 2001. The shell length growth was conducted using $32.35{\pm}1.35$ mm abalone juveniles for 374 days at densities $15{\%}\;(230\;indv./m^{2}),\;30{\%}\;(460\;indv./m^{2}),\;45{\%}\;(690 \;indv./m^{2}),\;60{\%}\;(920\;indv./m^{2})$. The result showed that the hightest growth rate was observed in lowest $(15{\%})$ density experimental group. Survival rate of Juvenile abalone was the highest in $15{\%}$\; density group and lowest in $45{\%}$ density group and distribution rate of shell length showed the highest as $30{\%}\;in\;230\;indv./m^{2}\;(15{\%})$ group.

Effects of Root Pruning, Stem Cutting and Planting Density on Survival and Growth Characteristics in Kalopanax septemlobus Seedlings (단근, 줄기 절단과 식재 밀도에 따른 음나무(Kalopanax septemlobus) 묘목의 활착 및 생장 특성)

  • Kang, Ho Sang
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.3
    • /
    • pp.97-105
    • /
    • 2013
  • Kalopanax septemlobus (Thunb. ex Murray) Koidz. is natively distributed in Korea. The importance of this species has been increased not only for high quality timber but for medicinal and edible uses. However, increasing market demand of K. septemlobus with illegal cutting and overexploitation has resulted in its rapid depletion and destruction of natural habitat. This study was conducted to understand the survival rate and growth characteristics of planted K. septemlobus seedlings with treatment of root pruning, stem cutting and planting density. The survival rate and growth of height and root-collar diameter for one- and two-year old seedlings with different planting densities were investigated in the clear-cut area of a Pinus densiflora stand for five years. One-year-old seedlings were treated with or without root pruning and planted with three density levels (5,000 trees $ha^{-1}$, 10,000 trees $ha^{-1}$, and 40,000 trees $ha^{-1}$). Two-year-old seedlings were treated with and without stem cutting and planted with the density of 5,000 trees $ha^{-1}$. The survival rate of one-year-old seedlings with root pruning treatment in the density of 10,000 trees $ha^{-1}$ was 92%, while that without root pruning in the density of 40,000 trees $ha^{-1}$ was 67% after five years. The height of one-year-old seedlings has been significantly affected only by planting density in the $5^{th}$ year. The survival rate of the two-year-old seedlings with stem cutting was 75.5% and greater than control (67.3%) in the $5^{th}$ year but no difference in height was shown between the two treatments from three years after plantation.

Effect of Planting Density on Yield and Growth Characteristics of Elephant Garlic (재식거리가 코끼리마늘(Allium ampeloprasum L.)의 생육과 수량에 미치는 영향)

  • Youn, Cheol Ku;Kim, Ki Hyun;Ahn, Ki Su;Jaeng, Jae Hyun;Park, Young Uk;Kwon, Young Hee;Lee, Sang Yeong
    • Korean Journal of Plant Resources
    • /
    • v.28 no.4
    • /
    • pp.541-545
    • /
    • 2015
  • This study investigated the effect of planting density on growth and yield of elephant garlic. Three planting densities of 20 × 20, 20 × 15, and 20 × 10 ㎝ were tested with the furrow width fixed at 120 ㎝ for the evaluation of elephant galic growth and yield. The average date of emergence was middle and late November, requiring about 30 days for the all emergence. For the flowering, 221 days after sowing were required in all the treatments. Plant height and leaf growth were not significantly different according to the planting density. Flower stalk was shorter when planting density was narrow. The L/D ratio was decreased to form oval shape when planting density was narrow. The yield of elephant garlic was 1,811 ㎏ /10a in planting density 20 × 20 ㎝, 2,375 ㎏/10a in 20 × 15 ㎝, and 2,838 ㎏/10a in 20 × 10 ㎝ plot. The marketable garlic ratio was highest as 1,593 ㎏/10a in planting density of 20 × 15 ㎝.

Effects of Ridge Height, Planting Density and Irrigation on Growth and Yield of Licorice

  • Han, Sang-Sun;Kim, Yeon-Bok;Lee, Sang-Yong;Chang, Kwang-Jin;Lee, Han-Bum;Lee, Ki-Cheol;Park, Cheol-Ho
    • Plant Resources
    • /
    • v.4 no.1
    • /
    • pp.6-12
    • /
    • 2001
  • Growth and yield of licorice were investigated under the different conditions of ridge height, planting density, and irrigation in order to establish its cultural practices for the domestic production with the aim to substitute the import. Seedlings were grown under low ridge(20cm) and high ridge(40cm) in low density plot(60$\times$30cm) and high density plot(40$\times$30cm), respectively. The low ridge cultivation of large seedlings increased plant height and root length under low density, and stem and root diameter under high density compared to the high ridge cultivation. In the high ridge cultivation, high density plot was 1.1 to 1.3 times in plant height, root length, stem and root diameter as high as low density one. Fresh and dry weight of plant and root in high ridge were 1.3 to 1.5 times as high as those in low one. The growth of small seedlings(4~10g) were generally poor compared to that of large seedlings. High density plot in low ridge showed the good growth characteristics including plant height, root length, stem and root diameter, and number of branch. High density plot was 1.4 to 1.6 times in fresh and dry weight of plant and root as high as low density plot. In the seasonal changes of growth under various irrigation regimes, the twice irrigation a day produced the more number of leaf than the other regimes since around 46 days after transplanting. The former irrigation resulted in 1.2 to 1.4 times in plant height as long as the other irrigations around 26 days after transplanting and then the difference was increased to 1.6 to 2.0 times around 64 days after transplanting. Under the twice irrigation a day, plant height, root length, stem diameter, root diameter, number of leaf, fresh plant weight, dry plant weight, fresh root weight, dry root weight were 1.6 to 2.0, 1.1, 1.2 to 1.6, 1.3 to 1.8, 1.9 to 2.7, 1.7 to 8.0, 1.6 to 2.8,2.0 to 3.0, 1.6 to 2.7 times as high as those under the other irrigation regimes, respectively.

  • PDF

A Study on the Optimum Planting Density of Urban Public Park in Seoul-In Case of the Munjung-Family APT. Complex- (서울지역 공원녹지 식재밀도의 적정성에 관한 연구 -문정 훼미리 아파트 단지내 공원녹지를 사례로)

  • 이준복;심경구
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.2
    • /
    • pp.219-228
    • /
    • 1998
  • This study was investigated a optimum planting density of urban public park in seoul. Eight species commonly usd as landscape plants were selected. The survey was conducted to measure hight and width of the trees by five years interval. The results are summarized as follows. The average annual growth rates of the trees after planting were 7.4% in height 11.7% in width. Faster grown trees than average growth rate of the survey tres wee Metasequoia, glyptostroboides and Acer buergerianum, While the slower grown trees were Pinus koraiensis, Ginkgo biloba and Zelkova serrata. The average grown trees were Pinus strobus, Pinus densiflora and Acer palmatum . The planting density of survey area was 0.20tree/$m^2$. The optimum planting density was kept until five years after planting, however overcrowding density was found beyond five years after planting. This study also found the density of ten years after planting reaches about 3 times of optimum density.

  • PDF

Relationship Between Bulk Density and Root Weight in White Ginseng (백삼의 심적밀도와 근중과의 관계)

  • Park, Hoon;Kim, Young-Hee;Yang, Cha-Bum
    • Journal of Ginseng Research
    • /
    • v.17 no.3
    • /
    • pp.224-227
    • /
    • 1993
  • Weight (g/root) and bulk density (g/$cm^3$) of tap root in 15-root-grade of 4-year-old white ginseng were investigated by specific gravity and weight-volume method. Bulk density measured by specific gravity ranged from 0.8 to 1.2g/$cm^3$ with almost normal distribution in frequency (number 1 of roots). Bulk density measured by volume-weight method had significant correlation with root weight. The percentage of high bulk density root (above 1.0) showed significant positive correlation with mean root weight or mean bulk density of root weight, indicating that the growth conditions for large root provide the better compactnes of root tissue.

  • PDF

Exploring Planting Strategies through Monitoring of a Greenspace Established in the Riparian Zone - The Case of an Implementation Site in Gapyeong County - (수변구역 조성 녹지의 모니터링을 통한 식재방안 모색 - 가평군 시공지를 대상으로 -)

  • Jo, Hyun-Kil;Park, Hye-Mi
    • Journal of Environmental Science International
    • /
    • v.25 no.12
    • /
    • pp.1689-1699
    • /
    • 2016
  • The growth conditions of planted trees, invasion of nuisance herbaceous species, competition between species, and effects of erosion control were monitored over five years in a riparian greenspace in Gapyeong County that was established through multilayered and grouped ecological planting. Of 156 trees planted in the upper and middle layers, 5.8% died. This tree death was attributed to poor drainage or aeration in the rooting zone from the clay-added root ball and too deep planting as well as a small-sized root ball and scanty fine roots. Of all the trees, 21.6% grew poorly due to transplant stress in the first year after planting, but they started to grow vigorously in the third year. This good growth was largely associated with soil improvement before planting, selection of appropriate tree species based on growth ground, and control of dryness and invasive climbing plants through surface mulching and multilayered/grouped planting. Mixed planting of fast-growing species as temporary trees was desirable for accelerating planting effect and increasing planting density. Thinning of fast-growing trees was required in the fifth year after planting to avoid considerable competition with target species. To reduce the invasion of herbaceous and climbing plants that oppress normal growth of planted trees, higher density planting of trees (crown opening of about 15%), woodchip mulching to a 10-cm depth, and edge planting 2 m wide were more effective than lower density planting (crown opening of 70%), no surface mulching, and no edge planting, respectively. This reduction effect was especially great during the first three years after planting. Nuisance herbaceous plants rarely invaded higher density planting with woodchip mulching over the five years. Higher density planting or woodchip mulching also showed much greater erosion control through rainfall interception and buffering than lower density planting with no mulching did. Based on these results, desirable planting and management strategies are suggested to improve the functions of riparian greenspaces.