• Title/Summary/Keyword: GRLWeap

Search Result 2, Processing Time 0.016 seconds

Driveability and Bearing Capacity Characteristics Analysis of 590 MPa Grade High Strength Steel Pipe Pile at Songdo Area through Dynamic Load Tests (동재하시험결과 분석을 통한 송도지역 590MPa급 고강도 강관말뚝의 항타관입성 및 지지력 특성 분석)

  • La, Seung-Min;Hong, Bong-Kyun;Yoo, Han-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.2
    • /
    • pp.81-90
    • /
    • 2011
  • Domestic usage of high strength steel for pile has been limited to steel with yield strength (YS) of 490 MPa. However, design and construction cases abroad show beneficial usage of steel pipe with YS ranging in 500~700 MPa. In this study, YS 590 MPa steel pipe has been tested for driven pile foundation in Songdo area. Pile dynamic analysis (PDA) was carried out for 18 piles of which 16 piles have been reviewed for comparison of the PDA test results with those of GRLWeap analysis using SPT N value. Back analysis of PDA analysis was also carried out to narrow the deviation of standard SPT N value used in GRLWeap analysis. A regression equation is suggested for the shaft and toe resistance according to SPT N values for future GRLWeap analysis that can be used in the designing stage at Songdo area.

An application of wave equation analysis program to pile dynamic formulae

  • Tokhi, H.;Ren, G.;Li, J.
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.345-360
    • /
    • 2015
  • Wave equation analysis programs (WEAP) such as GRLWEAP and TNOWave were primarily developed for pre-driving analysis. They can also be used for post-driving measurement applications with some refinements. In the case of pre-driving analysis, the programs are used for the purpose of selecting the right equipment for a given ground condition and controlling stresses during pile driving processes. Recently, the program is increasingly used for the post-driving measurement application, where an assessment based on a variety of input parameters such as hammer, driving system and dynamic behaviour of soil is carried out. The process of this type of analysis is quite simple and it is performed by matching accurately known parameters, such as from CAPWAP analysis, to the parameters used in GRLWEAP analysis. The parameters that are refined in the typical analysis are pile stresses, hammer energy, capacity, damping and quakes. Matching of these known quantities by adjusting hammer, cushion and soil parameters in the wave equation program results in blow counts or sets and stresses for other hammer energies and capacities and cushion configuration. The result of this analysis is output on a Bearing Graph that establishes a relationship between ultimate capacity and net set per blow. A further application of this refinement method can be applied to the assessment of dynamic formulae, which are extensively used in pile capacity calculation during pile driving process. In this paper, WEAP analysis is carried out to establish the relationship between the ultimate capacities and sets using the various parameters and using this relationship to recalibrate the dynamic formula. The results of this analysis presented show that some of the shortcoming of the dynamic formula can be overcome and the results can be improved by the introduction of a correction factor.