• Title/Summary/Keyword: GRIP FORCE

Search Result 110, Processing Time 0.019 seconds

A Study on Development of the Tongs Apparatus for Curbstone (도로경계석 작업을 위한 집게장치 개발에 관한 연구)

  • Kim, Yong-Seok;Lee, Chang-Don;Han, Hyeon-Yong;Park, Sung-Ho;Yang, Soon-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.107-115
    • /
    • 2008
  • In this research, it has been developed the tongs mechanism by a friction force for curbstone working. This tongs apparatus was farmed to grip and rotate the rectangular curbstone. Specification of this tongs apparatus has been determined by considering a loading weight and reversal load preventing reversal of 1.5 ton excavator. And, specification of the linear actuator has been determined with considering mechanical structure and the operation power demanded by the grip pad friction of tongs apparatus. The safety of the part has been examined from the 3D numerical simulation of the tongs apparatus. The operation system has been arranged to grip and rotate curbstone by on-off switching. The prototype has been established to carry out experiment after installing 1.5 ton excavator.

The Effect of Lightly Gripping a Cane on Sit-to-stand Transfer in Post-stroke Patients

  • Choi, Young-eun;An, Duk-hyun
    • Physical Therapy Korea
    • /
    • v.24 no.4
    • /
    • pp.54-59
    • /
    • 2017
  • Background: Light touch cue is a sensory input that could potentially help in the control of posture. The immediate stimulatory effect of light touch cues using a cane during gait is associated with postural stability. This strategy can help post-stroke individuals regain their ability to perform the sit-to-stand (STS) transfer safely. Objects: The effects of light grip on postural control during the STS transfer in post-stroke subjects were investigated. Methods: Eleven participants (6 men, 5 women) with hemiplegia due to stroke were recruited in the study. The subjects with hemiparesis performed STS transfer in three randomly assigned conditions (1) without a cane (2) light grip with a cane (3) strong grip with a cane. Results: The difference in weight-bearing distribution between the left and right feet, when the subjects were instructed to stand up, was $52.73{\pm}2.13%$ without a cane, $42.75{\pm}3.26%$ with a strong grip, and $43.00{\pm}2.55%$ with a light grip (p<.05). The rate of rise in force indicates the peak power provided by subjects during their STS transfers. The rate of rise in force was statistically significantly lower without a cane than that with a light grip or a strong grip (p<.05). The subjects' centers of pressure sway on the mediolateral side during STS transfers statistically significantly declined with a light grip or a strong grip when compared to those without a cane (p<.05). Conclusion: When the subjects with hemiparesis used a cane during STS transfers, their duration, center of pressure sway, and difference in weight-bearing distribution were all reduced. The subjects also exhibited similar results during STS transfers with a cane gripped lightly. This result may provide guidelines for the use of assistive devices when patients with hemiparesis practice STS transfers in clinical settings.

Association between Hand Grip Strength and Gait Variability in Elderly: Pilot Study (노인의 악력과 보행 가변성 간의 연관성: 예비연구)

  • Lee, Do-Youn;Lee, Yungon;Shin, Sunghoon
    • PNF and Movement
    • /
    • v.20 no.1
    • /
    • pp.125-134
    • /
    • 2022
  • Purpose: The aim of this study was to establish an association between grip strength and gait variability in the elderly. Methods: The participants in this experiment (n = 20) were aged 65 or older. Power grip and lateral pinch forces were obtained in grip strength tests, and spatiotemporal gait parameters were collected from IMU sensors during 6 min actual walking to test the gait of participants. The collected gait parameters were converted to coefficient of variation (CV) values. To confirm the association between grip strength and gait variability, a partial correlation analysis was conducted in which height, weight, and gait speed were input as controlling variables. Results: Grip power showed a significant negative correlation with the stride length CV (r = -0.52), and the lateral pinch force showed a significant negative correlation with the stance CV (r = -0.65) and swing CV (r = -0.63). Conclusion: This study reveals that gait variability decreases as grip strength increases, although height, weight, and gait speed were controlled. Thus, grip strength testing, a simple aging evaluation method, can help identify unstable gait in older adults at risk of falling, and grip strength can be utilized as a non-invasive measurement method for frailty management and prevention.

Grip Force Control of Myoelectric Signal Driving Type Myoelectric Hand Prosthesis (근전위 신호구동형 전동의수의 파지력 제어)

  • Choi, Gi-Won;Choe, Gyu-Ha;Shin, Woo-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.340-342
    • /
    • 2007
  • This paper presents the grip force control of myoelectric hand prosthesis according to myoelectric signal generated in the human muscle. The control system consist of a controller for driving DC motor, torque sensor for measuring out torque of motor, slip sensor for detecting slip of torque. The experimental results proved the reliability of proposed control system.

  • PDF

A Study on the Control System of Myoelectric Hand Prosthesis (근전의수의 제어시스템에 관한 연구)

  • Choi, Gi-Won;Chu, Jun-Uk;Choe, Gyu-Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.214-221
    • /
    • 2007
  • This paper presents a myoelectric hand prosthesis(MHP) with two degree of freedom(2-DOF), which consists of a mechanical hand, a surface myoelectric sensor(SMES) for measuring myoelectric signal, a control system and a charging battery. The actuation for the 2-DOF hand functions such as grasping and wrist rotation was performed by two DC-motors, and controlled by myoelectric signal measured from the residual forearm muscle. The grip force of the MHP was automatically changed by a mechanical automatic speed reducer mounted on the hand. The skin interface of SMES was composed of the electrodes using the SUS440 metal in order to endure a wet condition due to the sweat. The sensor was embedded with a amplifier and a filter circuit for rejecting the offset voltage caused by power line noises. The control system was composed of the grip force sensor, the slip sensor, and the two controllers. The two controllers were made of a RISC-type microprocessor, and its software was executed on a real-time kernel. The control system used Force Sensing Resistors, FSR, as slip pick-ups at the fingertip of a thumb and the grip force information was obtained from a strain-gauge on the lever of the MHP. The experimental results were showed that the proposed control system is feasible for the MHP.

Kinematics and Grip Forces of Professionals, Amateurs and Novices during Golf Putting (퍼팅 시 프로와 아마추어, 초보 골퍼사이의 운동학적 변인과 그립 악력 비교)

  • Choi, Jin-Seung;Kim, Hyung-Sik;Kang, Dong-Won;Kim, Han-Su;Oh, Ho-Sang;Seo, Jeong-Woo;Yi, Jeong-Han;Lim, Young-Tae;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.405-410
    • /
    • 2011
  • The purpose of this study was to compare the differences in kinematic variables and grip forces among professionals(PG), amateurs(AG), and novice group(NG) during golf putting. The participants consisted of 3 groups based on their playing ability: 8 professional golfers (handicap<5), 8 amateurs (handicap<18) and 8 novice. Each subject attempted 2.1m putts from the hole. 3D motion analysis system(Motion analysis Corp., USA) with 6 high speed cameras and grip force measurement system(Kim et al., 2007) were used to acquired kinematic and force data, respectively. To compare differences among groups, joint angles of upper limbs, trajectory and smoothness by jerk cost function(JC) of putter head and grip forces were used in this study. Results showed that there were significant differences among groups in most of variables such as joint angles, trajectory & smoothness of putter head, and distribution of grip force in both hands. In brief, we confirmed that putting stroke in PG was more accurate and smooth than that in other groups, especially NG, due to their well-controlled upper limbs and keeping grip forces constant in both hands. It can be concluded that due to skilled levels, fundamental differences of putting movement could be identified and these differences might be helpful for improving one's putting skills.

Basic Experiment on Rehabilitation of Upper-Limb Motor Function Using Haptic-Device System (햅틱 장치를 이용한 상지 운동기능 장애인의 재활치료에 관한 기초 실험)

  • Lee, Ho-Kyoo;Kim, Young-Tark;Takahashi, Yoshiyuki;Miyoshi, Tasuku;Suzuki, Keisuke;Komeda, Takashi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.459-467
    • /
    • 2011
  • Rehabilitation exercises must maintain a patient's interest and permit a quantitative evaluation of the rehabilitation. We have developed a haptic-device system. When users move a grip, the haptic device provides a virtual force that either assists the movement of their arm or working against it. To investigate the functional effect of this system in a rehabilitation program, we used for five subjects with motor-function disorders and measured the grip position, velocity, force exerted on the grip, and EMG activities during a reaching task of one subject. The accuracy of the grip position, velocity and trajectories patterns were similar for all the subjects. The results suggested that the EMG activities were improved by applying the virtual force to the grip. These results can be used for the development of rehabilitation programs and evaluation methods.

A Tactilely Transparent Soft Glove with High Grasping Force (높은 파지력을 가지며 촉감을 전달할 수 있는 유연한 글러브)

  • Jeong, Yong-Jun;Kim, Jong-In;Jeon, Hyeong-Seok;Lee, Deok-Won;Kim, Yong-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.12
    • /
    • pp.1011-1020
    • /
    • 2016
  • This paper introduces a tactilely transparent soft glove composed of soft materials and flexible structures. Although it is hard to achieve a high grasping force with conventional grip-assist gloves made from soft material, the proposed glove can exert a high force by using a novel structure. This structure has a triangular shape composed of flexible structural frames, soft fabric, and belts. It can produce grip-assist moment compliantly without harmful force or misalignment with the human fingers. The whole finger part that comes into contact with objects is made of thin and soft fabric in order to facilitate sensation transference. The proposed tactilely transparent soft glove enables the user to manipulate various objects owing to both the softness and high grasping force; it helps lifting heavy weight objects as well as permitting delicate tactile feeling on the palm and fingers. The proposed concept was applied to a two-finger grip-assist device for validation. In addition, the experimental results regarding grasping objects, fingertip force, and grasping force are presented.

The Effect of Various Wheelchair Handle Directions on Muscle Activity of Adult Male Trunks When Climbing Ramps

  • Ahn, Su-Hong;Lee, Su-Kyong
    • PNF and Movement
    • /
    • v.17 no.3
    • /
    • pp.379-389
    • /
    • 2019
  • Purpose: This study examined the effects of wheelchair handle directions on the trunk muscle activity of adult males when climbing ramps. It also evaluated the wheelchair attendant's physical discomfort during tasks. Methods: Healthy males aged over 20 years were chosen and the direction of wheelchair handle grip was randomly selected. The grips included a general grip with ulnar deviation, a medial grip with wrist pronation, and a neutral grip with a neutral wrist. The trunk muscle activity was measured using surface electromyography. Furthermore, the physical discomfort of wheelchair attendants was subjectively evaluated using the Borg CR-10 Scale, which rates the perceived exertion. In addition, the SPSS 18.0 program was used perform repeated measure ANOVA to compare muscle activity and subjective discomfort during the interventions. The contrast test was also conducted with a significance level (α) of 0.05. Results: There was significant difference between the general grip and the medial grip in the rhomboid major muscle and the lumbar erector spinae muscle (p<0.05). In addition, there was significant difference between the general grip and the neutral grip in the rhomboid major muscle and the lumbar erector spinae muscle (p<0.05). Further, there was significant difference between the general grip and the neutral grip in subjective discomfort (p<0.05). Conclusion: In this study, adult male trunk muscle activity and subjective discomfort were lowest when using the neutral grip while climbing ramps. Accordingly, we suggest that neutral grips will help improve the function of the musculoskeletal system and reduce the subjective discomfort by putting less strain on the trunk muscles and maximizing efficiency with less force.