• 제목/요약/키워드: GPU 공유

검색결과 36건 처리시간 0.027초

GPU에서의 SEED암호 알고리즘 수행을 통한 공인인증서 패스워드 공격 위협과 대응

  • 김종회;안지민;김민재;주용식
    • 정보보호학회지
    • /
    • 제20권6호
    • /
    • pp.43-50
    • /
    • 2010
  • 병렬처리를 이용한 GPU(그래픽 프로세싱 유닛)의 연산 능력이 날이 갈수록 고속화됨에 따라 GPU에 대한 관심이 높아지고 있다. GPU는 다중 쓰레드 처리가 가능하도록 CPU보다 수십 배 많은 멀티코어로 구성되어 있으며 이 각각의 코어는 맹렬 프로그래밍이 가능하도록 처리 결과를 공유할 수 있다. 최근 해외에서 이러한 GPU의 연산 능력을 이용한 해쉬인증 공격의 효과가 다수 입증되었으며 패스워드 기반의 인증 방식이 보편화 되어있는 국내에서도 GPU를 이용한 인증 공격이 시도되고 있다. 본 논문에서는 국내 금융권에서 사용되고 있는 공인인증서의 개인키 복호화 과정을 GPU내에서 고속 수행이 가능하도록 개선하고, 이를 바탕으로 패스워드 무차별 대입 공격을 시도하여 공인 인증서에 사용되는 패스워드가 보안의 안전지대만이 아님을 보인다. 또한 날로 발전하는 하드웨어의 연산속도에 맞추어 공인인증서 등에 보편적으로 사용되는 패스워드 정책의 개선 방안을 제시한다.

GPU를 공유하는 컨테이너 기반 클라우드 환경에서 다수의 사용자를 위한 원격 VR 서비스의 성능 관리 기법 (Performance Management Technique of Remote VR Service for Multiple Users in Container-Based Cloud Environments Sharing GPU)

  • 강지훈
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권1호
    • /
    • pp.9-22
    • /
    • 2022
  • VR(Virtual Reality) 기술은 사용자에게 컴퓨터 그래픽으로 구성된 가상 세계를 보여줌으로써 다양한 시청각 기반 응용에 적극적으로 활용되는 인터페이스 기술이다. VR 기반 응용은 그래픽 처리 기반 응용이기 때문에 그래픽 처리를 위해 GPU(Graphics Processing Unit)가 장착된 고가의 컴퓨팅 장치가 필수적으로 요구된다. 이는 VR 응용 사용자에게 컴퓨팅 장치의 유지, 관리에 대한 비용 부담을 발생시키며, 이를 해결하는 방법의 하나로써 서비스를 클라우드 환경에서 운용하는 방법이 사용되고 있다. 본 논문에서는 다수의 컨테이너가 VR 응용을 실행하기 위해 GPU를 공유하는 컨테이너 기반 고성능 클라우드 환경에서 GPU 자원 경쟁으로 인해 발생하는 컨테이너 사이의 성능 간섭 문제를 해결하기 위한 성능 관리 기법을 제안한다. 제안하는 기법은 성능 간섭으로 인한 성능 편차를 감소시켜 사용자에게 균일한 성능의 클라우드 기반 원격 VR 서비스를 제공할 수 있도록 지원한다. 또한, 본 논문에서는 실험을 통해 제안하는 기법의 효율성을 검증한다.

CPU-GPU환경에서 효율적인 메인메모리 접근을 위한 융합 프로세서 구조 개발 (A Development of Fusion Processor Architecture for Efficient Main Memory Access in CPU-GPU Environment)

  • 박현문;권진산;황태호;김동순
    • 한국전자통신학회논문지
    • /
    • 제11권2호
    • /
    • pp.151-158
    • /
    • 2016
  • 이기종시스템 구조(HSA)는 두 유닛의 각각에 메모리 폴(pools)이 가상메모리를 통해 공유할 수 있게 됨에 따라 CPU와 GPU 아키텍처의 오랜 문제를 해결하였다. 그러나 물리적 실제 시스템에서는 가상메모리 처리를 위해 GPU와 GPU 사이의 빈번한 메모리 이동으로 병목현상(Bottleneck)과 일관성 요청(Coherence request)의 오버헤드를 갖게 된다. 본 연구는 CPU와 GPU간의 효율적인 메인 메모리 접근방안으로 퓨전프로세서 알고리즘을 제안하였다. CPU가 요청한 처리할 메모리 영역을 GPU의 코어에 맞게 분배 제어해주는 기능으로 작업관리자(Job Manager)와 Re-mapper, Pre-fetcher를 제안하였다. 이를 통해 CPU와 GPU간의 빈번한 메시지도 감소되고 CPU의 메모리주소에 없는 Page-Table 요청이 낮아져 두 매체간의 효율성이 증대되었다. 제안한 알고리즘의 검증 방안으로 QEMU(:short for Quick EMUlator)기반의 에뮬레이터를 개발하고 CUDA(:Compute Unified Device. Architecture), OpenMP, OpenCL 등의 알고리즘과 비교평가를 하였다. 성능평가 결과, 본 연구에서 제안한 융합 프로세서 구조를 기존과 비교했을 때 최대 198%이상 빠르게 처리되면서 메모리 복사, 캐시미스 등의 오버헤드를 최소화하였다.

GPU의 스레드와 공유메모리를 이용한 LEA 최적화 방안 (Optimization of Lightweight Encryption Algorithm (LEA) using Threads and Shared Memory of GPU)

  • 박무규;윤지원
    • 정보보호학회논문지
    • /
    • 제25권4호
    • /
    • pp.719-726
    • /
    • 2015
  • 최근 빅데이터와 클라우드 보안에 대한 관심이 증가함에 따라 이를 효율적으로 암호화하기 위해 경량화된 고속 암호에 대한 연구가 진행되어 왔다. 그 결과, 국가보안기술연구소에서는 경량 고속 블록 암호인 LEA를 개발하였다. 경량화 암호인 LEA를 효율적으로 암 복호화를 위해 CPU가 아닌 GPU를 이용한 고속화 연구들이 최근에 소개되었다. 그럼에도 불구하고, GPU사용에 있어서의 가이드라인에 대한 연구는 여전히 미흡하다. 본 논문에서는 LEA알고리즘이 대용량 처리를 위해 사용될 때, 효율적인 GPU를 활용한 LEA 최적화방안에 대해 제안한다.

헤테로지니어스 멀티코어 성능 최적화를 위한 하이브리드 병렬 프로그래밍 (Hybrid parallel programming for Heterogeneous Multi-core performance optimization)

  • 임주호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(A)
    • /
    • pp.7-9
    • /
    • 2012
  • CPU는 싱글 코어 구조에서 클록 속도를 높여 성능을 향상 시키려는 노력을 해왔으나 한계에 도달하자 하나의 칩에 코어를 여러 개 둔 멀티코어 형태로 발전하였다. CPU의 성능 향상을 위해 이제는 3D그래픽을 연산처리하기 위해 만들어진 GPU와 결합하기에 이르렀다. CPU와 GPU의 결합은 CPU간의 결합보다 훨씬 더 좋은 성능을 보였고 전력의 사용량도 더 적었으며 비용면에서도 경제적이라는 장점을 가지고 있다. 본 논문에서는 CPU와 GPU의 Heterogeneous multicore상에서 성능을 최적화하기 위해 기존의 병렬화 모델을 조합하고 최적화를 시도하였다. CPU상에서는 성능 향상을 위해 기존의 병렬 프로그램 모델인 SIMD와 공유메모리 병렬 프로그래밍 모델 그리고 메시지 패싱 병렬 프로그래밍 모델을 조합하는 실험을 했다. GPU에서는 CUDA를 최적화 하였다. 이렇게 CPU와 GPU를 최적화하고 조합하여 고성능 연산을 요구하는 어플리케이션을 위한 Heterogeneous multicore 성능 최적화 방법을 제안한다.

CPU-GPU간 긴밀성을 위한 효율적인 공유메모리 접근 방법과 검증 시스템 구현 (Implementation of Integrated CPU-GPU for Efficient Uniform Memory Access Method and Verification System)

  • 박현문;권진산;황태호;김동순
    • 대한임베디드공학회논문지
    • /
    • 제11권2호
    • /
    • pp.57-65
    • /
    • 2016
  • In this paper, we propose a system for efficient use of shared memory between CPU and GPU. The system, called Fusion Architecture, assures consistency of the shared memory and minimizes cache misses that frequently occurs on Heterogeneous System Architecture or Unified Virtual Memory based systems. It also maximizes the performance for memory intensive jobs by efficient allocation of GPU cores. To test between architectures on various scenarios, we introduce the Fusion Architecture Analyzer, which compares OpenMP, OpenCL, CUDA, and the proposed architecture in terms of memory overhead and process time. As a result, Proposed fusion architectures show that the Fusion Architecture runs benchmarks 55% faster and reduces memory overheads by 220% in average.

DVB-T 수신기를 위한 대규모 병렬처리 GPU 기반의 비터비 복호기 구현 (Implementation of Viterbi Decoder on Massively Parallel GPU for DVB-T Receiver)

  • 이규형;이호경;허서원
    • 전자공학회논문지
    • /
    • 제50권9호
    • /
    • pp.3-11
    • /
    • 2013
  • 최근 GPU의 대규모 병렬 연산 능력을 이용하여 통신 시스템을 구현하려는 연구가 활발히 진행되고 있다. 본 논문에서는 DVB-T에 적용된 비터비 복호기를 슬라이딩 블록 방법과 함께 GPU에 적용시켜 소프트웨어 모의실험 처리시간을 줄였다. 본 논문에서는 먼저 DTV 표준 방식의 일종인 DVB-T 시스템을 CPU로 구현하여 모의실험을 통해 한 개의 OFDM 심볼을 처리하는데 소요되는 시간을 추정한다. 그리고 슬라이딩 블록 방법을 적용한 DVB-T의 비터비 복호기를 NVIDIA사의 대용량 GPU 프로세서를 이용하여 소프트웨어로 구현한다. 본 논문은 GPU 소프트웨어의 최적화를 위해 CPU와 GPU 간의 데이터 전송에 소요되는 오버헤드를 줄이는 스트림 처리 기법, 전역 메모리 전송 시간을 단축하기 위한 결합 전송 기법 (coalescing), 공유 메모리 접근의 효율성을 높이기 위한 변수 설계 기법 등을 통해서 연산처리 속도를 대폭 향상시켰다. 그 결과 제안된 방식은 CPU 기반의 비터비 복호기보다 2K 모드에서 약 11배, 8K 모드에서 약 60배 정도 빠른 처리 능력을 보인다.

바이오 응용을 위한 직접 통로 기반의 GPU 가상화 (Direct Pass-Through based GPU Virtualization for Biologic Applications)

  • 최동훈;조희승;이명호
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권2호
    • /
    • pp.113-118
    • /
    • 2013
  • 현재 개발된 GPU 가상화 기술은 모두 미세한 시분할 기법에 의한 스케줄링을 사용하기 때문에 어플리케이션 실행을 위한 오버헤드를 필요 이상으로 유발한다. 또한 이들은 가상 머신 모니터에 GPU 컴퓨팅 API를 포함하고 있어서, 가상 머신 모니터의 이식성이 약하다. 본 논문에서는 이질적 컴퓨팅 시스템에서 바이오 어플리케이션에 최적화된 GPU 가상화 기술을 제안하며, 공개 소스 Xen을 사용하여 개발하였다. 우리가 제안하는 방법은 가상 머신 간의 GPU 공유를 시분할에 의존하지 않는다. 대신에 하나의 가상 머신이 GPU를 할당 받으면 그 가상 머신이 어플리케이션을 종료할 때까지 GPU를 사용하도록 허용한다. 이렇게 하여 바이오 어플리케이션의 성능을 향상시키고 GPU의 활용률을 높인다. GPU 가상화의 이식성을 높이기 위해 하드웨어가 지원하는 IOMMU 가상화를 이용하여 GPU에 대한 직접 접근 통로를 제공한다. 미생물 유전체 분석 어플리케이션을 대상으로 성능을 분석한 결과, 본 연구에서 제안하는 직접 통로 방식에 의한 GPU 가상화는 Domain0를 통한 접근에 비해 오버헤드가 적었다. 또한 직접 접근 방식에 의한 가상 머신의 GPU 접근은, 비가상화된 머신과 거의 성능의 차이가 없었다.

Heterogeneous 멀티 코어 환경의 Thick Client에서 VDI 성능 최적화를 위한 혼합 병렬 처리 기법 연구 (VDI Performance Optimization with Hybrid Parallel Processing in Thick Client System under Heterogeneous Multi-Core Environment)

  • 김명섭;허의남
    • 한국통신학회논문지
    • /
    • 제38B권3호
    • /
    • pp.163-171
    • /
    • 2013
  • 최근 HD급 동영상이나 3D 어플리케이션과 같은 이전보다 저사양, 모바일 단말에서는 구동하기 힘든 프로그램들에 대한 이용 요구가 확대되면서 처리해야 할 콘텐츠 데이터들이 고용량화 되고 있다. 클라우드 기반의 VDI(Virtual Desktop Infrastructure) 서비스는 이를 처리하기 위해 효율적인 데이터 처리 능력이 필요해졌으며 QoE(Quality of Experience) 보장을 위한 성능 개선 연구가 이슈가 되고 있다. 본 논문에서는 H/W 성능이 향상되어 CPU와 GPU를 탑재한 Thick Client기반의 3가지 Thick-Thin간 VDI 자원 공유 및 위임이 가능한 VDI 서비스에 대해 제안하며, VDI 서비스 성능의 개선을 위해 CPU와 GPU가 혼합된 Heterogeneous 멀티코어 환경에서 CPU와 GPU 병렬 처리 기법인 OpenMP와 CUDA를 활용하여 VDI 서비스 최적화 방안을 제안하고 기존의 VDI와 비교한 성능을 거론한다.

CUDA와 OPenMP를 이용한 빠르고 효율적인 신경망 구현 (Fast and Efficient Implementation of Neural Networks using CUDA and OpenMP)

  • 박안진;장홍훈;정기철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권4호
    • /
    • pp.253-260
    • /
    • 2009
  • 컴퓨터 비전이나 패턴 인식 분야에서 이용되고 있는 많은 알고리즘들이 최근 빠른 수행시간을 위해 GPU에서 구현되고 있지만, GPU를 이용하여 알고리즘을 구현할 경우 크게 두 가지 문제점을 고려해야 한다. 첫째, 컴퓨터 그래픽스 분야의 지식이 필요한 쉐이딩(shading) 언어를 알아야 한다. 둘째, GPU를 효율적으로 활용하기 위해 CPU와 GPU간의 데이터 교환을 최소화해야 한다. 이를 위해 CPU는 GPU에서 처리할 수 있는 최대 용량의 데이터를 생성하여 GPU에 전송해야 하기 때문에 CPU에서 많은 처리시간을 소모하며, 이로 인해 CPU와 GPU 사이에 많은 오버헤드가 발생한다. 본 논문에서는 그래픽 하드웨어와 멀티코어(multi-core) CPU를 이용한 빠르고 효율적인 신경망 구현 방법을 제안한다. 기존 GPU의 첫 번째 문제점을 해결하기 위해 제안된 방법은 복잡한 쉐이팅 언어 대신 그래픽스적인 기본지식 없이도 GPU를 이용하여 응용프로그램 개발이 가능한 CUDA를 이용하였다. 두 번째 문제점을 해결하기 위해 멀티코어 CPU에서 공유 메모리 환경의 병렬화를 수행할 수 있는 OpenMP를 이용하였으며, 이의 처리시간을 줄여 CPU와 GPU 환경에서 오버 헤드를 최소화할 수 있다. 실험에서 제안된 CUDA와 OpenMP기반의 구현 방법을 신경망을 이용한 문자영역 검출 알고리즘에 적용하였으며, CPU에서의 수행시간과 비교하여 약 15배, GPU만을 이용한 수행시간과 비교하여 약 4배정도 빠른 수행시간을 보였다.