Multiview stereo matching algorithm is used to reconstruct 3D shape from a set of 2D images. Conventional multiview stereo algorithms have been implemented on high-performance hardware due to the heavy complexity that contains a large number of calculations in each step. However, as the performance of mobile graphics processors has recently increased rapidly, complex computer vision algorithms can now be implemented on mobile devices like a smartphone and an embedded board. In this paper we parallelize an multiview stereo algorithm using OpenCL on mobile GPU and provide various optimization techniques on the embedded hardware with limited resource.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2011.07a
/
pp.396-398
/
2011
본 논문은 두 대의 카메라와 한 대의 프로젝터로 구성된 Pro-cam시스템을 이용하여, 출력된 패턴 영상을 카메라로 촬영하고 이를 기반으로 Depth Map을 계산하는 모듈의 실시간 처리를 위한 GPU기반 병렬처리 기법을 제안한다. 입력받은 영상으로부터 구조광의 패턴을 해석하고, Depth Map을 계산하기 위해서, Dynamic pattern decoding하는 과정은 프로젝터의 패턴영상과 촬영된 카메라 패턴영상 간의 관계를 반복적으로 비교하므로, 이를 GPU 프로그래밍을 이용하여 병렬 처리를 통해 고속화하였다. 결과적으로 본 논문에서는 기존 CPU에서 수행했던 속도에 비해 약 18배정도 속도를 개선 할 수 있었다.
Park, Il-Nam;Bae, Byunggurl;Im, Eun-Jin;Kang, Seung-Shik
Annual Conference on Human and Language Technology
/
2011.10a
/
pp.83-84
/
2011
정보 검색 시스템에서 사용되고 있는 벡터 공간 모델은 벡터 유사도 계산 속도에 따라 전체 시스템의 성능에 많은 영향을 미친다. 본 논문에서는 문서 유사도 계산 성능을 향상시키기 위하여 GPU(Graphic Processing Unit)를 이용하는 CUDA프레임워크에서 병렬처리 연산을 구현하였으며, CPU(Central Processing Unit) 환경에서의 연산 속도와 비교했을 때 최대 15배의 성능 향상 효과가 있음을 확인하였다.
Proceedings of the Korea Information Processing Society Conference
/
2022.11a
/
pp.37-39
/
2022
KISTI(한국과학기술정보연구원)는 슈퍼컴퓨터 5호기 메인시스템인 Nurion과 보조시스템인 Neuron을 연구자들에게 서비스하고 있다. Neuron은 메인시스템인 Nurion이 Intel Knights Landing 프로세서가 장착된 클러스터로 구성됨에 따라 인공지능, 빅데이터에 관한 연구 인프라 수요를 충족시키기 위해 GPU를 장착한 이기종 클러스터로 구성되어 있다. Neuron은 연구자들에게 효율적으로 계산 자원을 배분하기 위해 SLURM 작업배치스케줄러의 공유노드 정책을 이용하여 한 개의 계산노드에서 다수 개의 작업이 수행될 수 있는 환경으로 서비스되고 있다. 본 논문에서는 공유노드 정책으로 운영 중인 클러스터 시스템에서 작업별로 GPU 사용 통계 데이터를 생성하는 기법을 소개한다.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.2-4
/
2023
KISTI의 GPU 클러스터 시스템인 뉴론은 NVIDIA의 A100과 V100 GPU가 총 260개 탑재되어 있는 클러스터 시스템이다. 뉴론의 계산노드들은 고성능의 인터커넥트인 Infiniband(IB) 케이블로 연결되어 있어 멀티 노드 작업 수행 시에 고대역 병렬통신이 가능하다. 본 논문에서는 NVIDIA사에서 제공하는 NCCL의 벤치마크 코드를 이용하여 인터커넥트 네트워크의 통신 성능을 비교분석하는 방안에 대해서 소개한다.
Journal of the Korea Society of Computer and Information
/
v.26
no.1
/
pp.1-9
/
2021
OpenGL compute shader is a shader stage that operate differently from other shader stage and it can be used for the calculating purpose of any data in parallel. This paper proposes a GPU-based parallel algorithm for computing sparse linear systems through conjugate gradient using an iterative method, which perform calculation on OpenGL compute shader. Basically, this sparse linear solver is used to solve large linear systems such as symmetric positive definite matrix. Four well-known matrix formats (Dense, COO, ELL and CSR) have been used for matrix storage. The performance comparison from our experimental tests using eight sparse matrices shows that GPU-based linear solving system much faster than CPU-based linear solving system with the best average computing time 0.64ms in GPU-based and 15.37ms in CPU-based.
Proceedings of the Korea Information Processing Society Conference
/
2015.10a
/
pp.238-241
/
2015
특징점 추출 알고리즘은 물체인식, 로보틱스, 비디오트래킹 등 많은 컴퓨터 비전 분야에 사용된다. 그 중 SIFT 알고리즘은 많은 계산량이 필요한 알고리즘으로 구성되어 있으므로 높은 화소의 이미지를 처리하기 위해서는 많은 시간이 소요되므로 GPU를 통한 가속이 필요하다. 본 논문에서는 NVIDIA GPU 장비를 사용하는 CUDA를 이용하여 SIFT 알고리즘을 병렬적으로 처리하여 4배 이상의 수행시간 감소 및 특징점이 많고 고해상도인 영상에서 효율이 더 높은 것을 확인하였다.
3D backprojection is a kind of reconstruction algorithm to generate volume data consisting of tomographic images, which provides spatial information of the original 3D data from hundreds of 2D projections. The computational time of backprojection increases in proportion to the size of volume data and the number of projection images since the value of every voxel in volume data is calculated by considering corresponding pixels from hundreds of projections. For the reduction of computational time, fast GPU based 3D backprojection methods have been studied recently and the performance of them has been improved significantly. This paper presents two multiple GPU based methods to maximize the parallelism of GPU and compares the efficiencies of two methods by considering both the number of projections and the size of volume data. The first method is to generate partial volume data independently for all projections after allocating a half size of volume data on each GPU. The second method is to acquire the entire volume data by merging the incomplete volume data of each GPU on CPU. The in-complete volume data is generated using the half size of projections after allocating the full size of volume data on each GPU. In experimental results, the first method performed better than the second method when the entire volume data can be allocated on GPU. Otherwise, the second method was efficient than the first one.
Journal of the Korean Data and Information Science Society
/
v.24
no.5
/
pp.1043-1061
/
2013
Recent advances in computer technology introduce massive data and their analysis becomes important. The high performance computing is one of the most essential part in analysis of massive data. In this paper, we review the general purpose of the graphics processing unit and its application to parallel computing, which has been of great interest in statistics communities.
In this study, an efficient algorithm for Delaunay triangulation of a number of points which can be used on a GPU-based parallel computation is studied The developed algorithm is programmed using CUDA library. and the program takes full advantage of parallel computation which are concurrently performed on each of the threads on GPU. The results of partitioned triangulation collected from the GPU computation requires proper stitching between neighboring partitions and calculation of connectivities among triangular cells on CPU In this study, the effect of number of threads on the efficiency and total duration for Delaunay grid generation is studied. And it is also shown that GPU computing using CUDA for Delaunay grid generation is feasible and it saves total time required for the triangulation of the large number points compared to the sequential CPU-based triangulation programs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.