Park, Il-Nam;Bae, Byung-Gurl;Im, Eun-Jin;Kang, Seung-Shik
The KIPS Transactions:PartB
/
v.19B
no.4
/
pp.243-248
/
2012
In the information retrieval systems like vector model implementation and document clustering, document similarity calculation takes a great part on the overall performance of the system. In this paper, GPU parallelism has been explored to enhance the processing speed of document similarity calculation in a CUDA framework. The proposed method increased the similarity calculation speed almost 15 times better compared to the typical CPU-based framework. It is 5.2 and 3.4 times better than the methods by using CUBLAS and Thrust, respectively.
Numerical simulation in exploration geophysics provides important insights into subsurface wave propagation phenomena. Although elastic wave simulations take longer to compute than acoustic simulations, an elastic simulator can construct more realistic wavefields including shear components. Therefore, it is suitable for exploration of the responses of elastic bodies. To overcome the long duration of the calculations, we use a Graphic Processing Unit (GPU) to accelerate the elastic wave simulation. Because a GPU has many processors and a wide memory bandwidth, we can use it in a parallelised computing architecture. The GPU board used in this study is an NVIDIA Tesla C1060, which has 240 processors and a 102 GB/s memory bandwidth. Despite the availability of a parallel computing architecture (CUDA), developed by NVIDIA, we must optimise the usage of the different types of memory on the GPU device, and the sequence of calculations, to obtain a significant speedup of the computation. In this study, we simulate two- (2D) and threedimensional (3D) elastic wave propagation using the Finite-Difference Time-Domain (FDTD) method on GPUs. In the wave propagation simulation, we adopt the staggered-grid method, which is one of the conventional FD schemes, since this method can achieve sufficient accuracy for use in numerical modelling in geophysics. Our simulator optimises the usage of memory on the GPU device to reduce data access times, and uses faster memory as much as possible. This is a key factor in GPU computing. By using one GPU device and optimising its memory usage, we improved the computation time by more than 14 times in the 2D simulation, and over six times in the 3D simulation, compared with one CPU. Furthermore, by using three GPUs, we succeeded in accelerating the 3D simulation 10 times.
In this paper, we propose an improved curvature-based GPU (Graphics Processing Unit) isosurface ray-casting technique. Our method adopts the fast evaluation method proposed by Sigg et al. [1] to find the isosurface, but replaces the computation of the gradient and Hessian with the de Boor algorithm. In this way, we can reduce the number of additional texture fetches from 84 to 27 thus improving the performance by up to ${\approx}30%$, depending on the platforms.
최근 프로그래밍이 가능한 그래픽스 프로세서(GPU)의 등장은 렌더링 속도의 향상은 물론 기존의 GPU가 할 수 없었던 다양한 그래픽스 계산을 효과적으로 수행할 수 있도록 해주고 있다. 이로 인하여 기존에 CPU 상에서 수행해야만 했던 그래픽스 계산들의 일부를 GPU 상에서 수행하도록 해주는 기법들에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 선형식에 기반을 둔 여러 응용 문제들을 GPU 상에서 효율적으로 구현할 수 있도록 도와주는 쉐이더 코드 최적화 기법을 제안한다. 이 기법은 SIMD 형태의 병렬 처리 능력을 가진 버텍스 쉐이더의 명령어에 맞게 고안되었다. 본 기법의 활용 가능성을 보이기 위하여 미분 방정식을 풀기 위한 4차 런지-쿠타 방법, 선형방정식을 풀기 위한 가우스-자이델 방법, 자연스러운 유체 모델링을 위한 파동 방정식 등의 문제에 적용하여 보았다. 본 논문에서 제안한 최적화 기법은 버텍스 쉐이더 용 컴파일러 구현에 쓰일 수 있으며, 향후 프로그래밍이 가능한 GPU 상에서의 실시간 그래픽스 소프트웨어 개발에 유용하게 사용될 수 있을 것이다.
Proceedings of the Korean Society of Computer Information Conference
/
2022.01a
/
pp.373-376
/
2022
본 논문에서는 삼각형 메쉬 기반에서 옷감 시뮬레이션(Cloth simulation)에서 계산양이 큰 자기충돌(Self-collision) 처리를 GPU기반으로 가속화시킬 수 있는 방법에 대해 소개한다. CUDA기반으로 병렬 최적화하기 위해 본 논문에서는 1)재귀적으로 계산하여 충돌판정을 하는 BVH(Bounding volume hierarchy) 트리를 GPU기반에서 효율적으로 빌드, 업데이트, 트리 순회하는 방법을 제안하고, 2)삼각형 메쉬 기반에서는 중복되는 프리미티브(Primitive) 충돌검사를 최소화하기 위해 R-Triangle기법을 GPU에서 최적화 시키는 방법을 소개한다. 결과적으로 본 논문에서 제안하는 기법은 GPU 환경에서 옷감 시뮬레이션의 자기충돌과 객체충돌 처리를 빠르고 효율적으로 처리할 수 있도록 하였고, 다양한 장면에서 실험한 결과 모든 결과에서 빠른 시뮬레이션 결과를 얻을 수 있었다.
The molecular docking system needs a large amount of computation and requires super-computing power. Since the experiment requires a large amount of time, the experiment is conducted in the distributed environment or in the grid environment. Recently, researches on using parallel GPU of far higher performance than that of CPU in scientific computing have been very actively conducted. CUDA is an open technique by which a parallel GPU programming is made possible. This study proposes the molecular docking system using CUDA. It also proposes algorithm that parallels energy-minimizing-computation. To verify such experiments, this study conducted a comparative analysis on the time required for experimenting molecular docking in general CPU and the time and performance of the parallel GPU-based molecular docking which is proposed in this study.
Kim, Nam-Young;Choi, Do-Jin;Bok, Kyoung-Soo;Yoo, Jae-Soo
The Journal of the Korea Contents Association
/
v.22
no.6
/
pp.56-68
/
2022
Recently, as the demand for real-time processing increases, studies on a dynamic graph that changes over time has been actively done. There is a connected components processing algorithm as one of the algorithms for analyzing dynamic graphs. GPUs are suitable for large-scale graph calculations due to their high memory bandwidth and computational performance. However, when computing the connected components of a dynamic graph using the GPU, frequent data exchange occurs between the CPU and the GPU during real graph processing due to the limited memory of the GPU. The proposed scheme utilizes the Weighted-Quick-Union algorithm to process large-scale graphs on the GPU. It supports fast connected components computation by applying the size to the connected component label. It computes the connected component by determining the parts to be recalculated and minimizing the data to be transmitted to the GPU. In addition, we propose a processing structure in which the GPU and the CPU execute asynchronously to reduce the data transfer time between GPU and CPU. We show the excellence of the proposed scheme through performance evaluation using real dataset.
Recently the research on GPGPU has been carried out actively as the performance of GPUs has been increased rapidly. In this paper, we propose the system architecture by benchmarking the existing supercomputer architecture for a cost-effective system using GPUs in low-cost graphics devices and implement a GPU cluster system with eight GPUs. We also make the software development environment that is suitable for the GPU cluster system and use it for the performance evaluation by implementing the n-body problem. According to its result, we found that it is efficient to use multiple GPUs when the problem size is large due to its communication cost. In addition, we could calculate up to eight million celestial bodies by applying the method of calculating block by block to mitigate the problem size constraint due to the limited resource in GPUs.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.109-109
/
2019
본 연구에서는 강우-유출 과정 모의를 위한 GPU 기반 확산파 모형을 개발하였다. 확산파 방정식을 풀기위한 수치기법으로는 유한체적법을 이용하였으며, van Leer TVD limiter를 적용한 MUSCL 기법을 이용하여 각 셀의 인터페이스의 물리적 성질을 재구성하여 구하였다. 또한, 침투를 고려하기 위하여 Horton 침투 모형을 이용하였다. 개발된 모형을 이용하여 1D single overland plane과 2D V-shaped overland에서 강우-유출 과정을 모의실험을 하였으며, 각각 해석해와 dynamic wave model을 이용하여 계산된 수치 결과와 비교하여 본 모형의 정확성을 검증하였다. 또한, 1D와 2D의 기복이 심한 지형에 적용하여 강우-유출과정이 본 모형을 통하여 물리적으로 타당한 해석이 가능함을 검증하였다. 마지막으로 복잡한 실제 지형에 적용하였으며, 측정값과의 비교를 통하여 실제 유역에서의 확산파 모형의 적정성을 검증하였다. 또한, 본 연구에서는 NVIDIA사의 GPU인 Geforce GTX 1050과 GPU의 병렬 연산 처리 능력을 활용할 수 있는 NVIDIA사의 CUDA-Fortran을 이용하여 GPU 기반 확산파 모형을 개발하였다. PC windows에서 CPU(Intel i7, 4.70 GHz) 기반 모형 대비 GPU 기반 모형의 계산속도 성능을 비교한 결과, 격자 간격이 증가할수록 CPU 기반 모형 대비 GPU 기반 모형의 연산 효율이 증가하였으며, 격자 간격이 $3200{\times}3200$일 때, CPU 기반 모형 대비 GPU 기반 모형의 연산 효율이 최대 약 150배 증가하였다.
Journal of the Institute of Electronics and Information Engineers
/
v.51
no.2
/
pp.76-84
/
2014
As the number of high-density videos increase, parallel processing approaches are necessary to process a large-scale of video data. When a processing method of video data requires thousands of simple operations, GPU-based parallel processing is preferred to CPU-based parallel processing by way of reducing the time and space complexities of a given computation problem. This paper studies the parallel design and implementation of a shot-boundary detection algorithm. The proposed shot-boundary detection algorithm uses pixel brightness comparisons and global histogram data among the blocks of frames, and the computation of these data is characterized with the high parallelism for the related operations. In order to maximize these operations in parallel, the computations of the pixel brightness and histogram are designed in parallel and implemented in NVIDIA GPU. The GPU-based shot detection method is tested with 10 videos from the set of videos in National Archive of Korea. In experiments, the detection rate is similar but the computation time is about 10 time faster to that of the CPU-based algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.