• Title/Summary/Keyword: GPU(Graphic Processing Unit) Processing

Search Result 81, Processing Time 0.037 seconds

A Realization of FPGA-based Image Recognition System (FPGA기반 영상인식 시스템 구현)

  • Young Yun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.349-350
    • /
    • 2022
  • Recently, AI (Artificial Intelligence) has been applied to various technologies such as automatic driving, robot and smart communication. Currently, AI system is developed by software-based method using tensor flow, and GPU (Graphic Processing Unit) is employed for processing unit. In this work, we developed an FPGA-based (Field Programmable Gate Array) AI system , and report on image recognition system to realize the AI system.

  • PDF

Acceleration of the Iterative Physical Optics Using Graphic Processing Unit (GPU를 이용한 반복적 물리 광학법의 가속화에 대한 연구)

  • Lee, Yong-Hee;Chin, Huicheol;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.11
    • /
    • pp.1012-1019
    • /
    • 2015
  • This paper shows the acceleration of iterative physical optics(IPO) for radar cross section(RCS) by using two techniques effectively. For the analysis of the multiple reflection in the cavity, IPO uses the near field method, unlike shooting and bouncing rays method which uses the geometric optics(GO). However, it is still far slower than physical optics(PO) and it is needed to accelerate the speed of IPO for practical purpose. In order to address this problem, graphic processing unit(GPU) can be applied to reduce calculation time and adaptive iterative physical optics-change rate(AIPO-CR) method is also applicable effectively to optimize iteration for acceleration of calculation.

Implememtation of Fast Rasterizer processing using GPGPU based on SIMT structure (SIMT 구조 기반 GPGPU를 이용한 고속 Rasterizer 구현)

  • Kim, Chiyong
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.276-279
    • /
    • 2017
  • In this paper, SIMT structure based GPGPU (General Purpose Computing on Graphics Processing Units) is used for accelerating the Rasterizer which constitutes the screen of the display device in pixel unit. The GPU has a large number of ALUs, and the processing is very fast because of parallel processing. Therefore, in this paper, we implemented a rasterizer that generates a 3D graphics model using a CPU that performs operations sequentially and a GPU that performs operations in parallel. We confirmed that proposed rasterizer in this paper is 1.45 times better than rasterizer using Intel CPU when generating one frame.

Fast Double Random Phase Encoding by Using Graphics Processing Unit (GPU 컴퓨팅에 의한 고속 Double Random Phase Encoding)

  • Saifullah, Saifullah;Moon, In-Kyu
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.343-344
    • /
    • 2012
  • With the increase of sensitive data and their secure transmission and storage, the use of encryption techniques has become widespread. The performance of encoding majorly depends on the computational time, so a system with less computational time suits more appropriate as compared to its contrary part. Double Random Phase Encoding (DRPE) is an algorithm with many sub functions which consumes more time when executed serially; the computation time can be significantly reduced by implementing important functions in a parallel fashion on Graphics Processing Unit (GPU). Computing convolution using Fast Fourier transform in DRPE is the most important part of the algorithm and it is shown in the paper that by performing this portion in GPU reduced the execution time of the process by substantial amount and can be compared with MATALB for performance analysis. NVIDIA graphic card GeForce 310 is used with CUDA C as a programming language.

  • PDF

A Study on GPU-based Iterative ML-EM Reconstruction Algorithm for Emission Computed Tomographic Imaging Systems (방출단층촬영 시스템을 위한 GPU 기반 반복적 기댓값 최대화 재구성 알고리즘 연구)

  • Ha, Woo-Seok;Kim, Soo-Mee;Park, Min-Jae;Lee, Dong-Soo;Lee, Jae-Sung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.459-467
    • /
    • 2009
  • Purpose: The maximum likelihood-expectation maximization (ML-EM) is the statistical reconstruction algorithm derived from probabilistic model of the emission and detection processes. Although the ML-EM has many advantages in accuracy and utility, the use of the ML-EM is limited due to the computational burden of iterating processing on a CPU (central processing unit). In this study, we developed a parallel computing technique on GPU (graphic processing unit) for ML-EM algorithm. Materials and Methods: Using Geforce 9800 GTX+ graphic card and CUDA (compute unified device architecture) the projection and backprojection in ML-EM algorithm were parallelized by NVIDIA's technology. The time delay on computations for projection, errors between measured and estimated data and backprojection in an iteration were measured. Total time included the latency in data transmission between RAM and GPU memory. Results: The total computation time of the CPU- and GPU-based ML-EM with 32 iterations were 3.83 and 0.26 see, respectively. In this case, the computing speed was improved about 15 times on GPU. When the number of iterations increased into 1024, the CPU- and GPU-based computing took totally 18 min and 8 see, respectively. The improvement was about 135 times and was caused by delay on CPU-based computing after certain iterations. On the other hand, the GPU-based computation provided very small variation on time delay per iteration due to use of shared memory. Conclusion: The GPU-based parallel computation for ML-EM improved significantly the computing speed and stability. The developed GPU-based ML-EM algorithm could be easily modified for some other imaging geometries.

Implementation of Particle Swarm Optimization Method Using CUDA (CUDA를 이용한 Particle Swarm Optimization 구현)

  • Kim, Jo-Hwan;Kim, Eun-Su;Kim, Jong-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.1019-1024
    • /
    • 2009
  • In this paper, particle swarm optimization(PSO) is newly implemented by CUDA(Compute Unified Device Architecture) and is applied to function optimization with several benchmark functions. CUDA is not CPU but GPU(Graphic Processing Unit) that resolves complex computing problems using parallel processing capacities. In addition, CUDA helps one to develop GPU softwares conveniently. Compared with the optimization result of PSO executed on a general CPU, CUDA saves about 38% of PSO running time as average, which implies that CUDA is a promising frame for real-time optimization and control.

An Analytical Model for Performance Prediction of AES on GPU Architecture (GPU 아키텍처의 AES 암호화 성능 예측 분석 모델)

  • Kim, Kyuwoon;Kim, Hyunwoo;Kim, Huijeong;Huh, Taeyoung;Jung, Sanghyuk;Song, Yong Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.89-96
    • /
    • 2013
  • The graphic processor unit (GPU) has been developed to process not only graphic data but also general system data. It shows a better performance than CPU in algorithm for 3D graphics and parallel program. In order to execute algorithm for CPU on GPU, we should understand about GPU architectures and rewrite program considering parallel processing capability and new memory model of GPU. For this reasons, a performance prediction model for the algorithm and its predicted performance through GPU system are required. These can predict problems in GPU application development or construct a performance evaluation standard for GPU. In this paper, we applied the AES encryption algorithms on our performance model and accomplished performance prediction with high accuracy under a heavy workload.

Proposal of 3D Graphic Processor Using Multi-Access Memory System (Multi-Access Memory System을 이용한 3D 그래픽 프로세서 제안)

  • Lee, S-Ra-El;Kim, Jae-Hee;Ko, Kyung-Sik;Park, Jong-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.119-128
    • /
    • 2019
  • Due to the nature of the 3D graphics processor system, many mathematical calculations are required and parallel processing research using GPU (Graphics Processing Unit) is being performed for high-speed processing. In this paper, we propose a 3D graphics processor using MAMS, a parallel processor that does not use cache memory, to solve the GPU problem of increasing bandwidth caused by cache memory miss and the problem that 3D shader processing speed is not constant. The 3D graphics processor using MAMS proposed in this paper designed Vertex shader, Pixel shader, Tiling and Rasterizing structure using DirectX command analysis, the FPGA(Xilinx Virtex6@100MHz) board for MAMS was constructed and designed using Verilog. We compared the processing time of the developed FPGA (100Mhz) and nVidia GeForce GTX 660 (980Mhz), the processing time using GTX 660 was not constant and suing MAMS was constant.

Parallel Processing of Satellite Images using CUDA Library: Focused on NDVI Calculation (CUDA 라이브러리를 이용한 위성영상 병렬처리 : NDVI 연산을 중심으로)

  • LEE, Kang-Hun;JO, Myung-Hee;LEE, Won-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.29-42
    • /
    • 2016
  • Remote sensing allows acquisition of information across a large area without contacting objects, and has thus been rapidly developed by application to different areas. Thus, with the development of remote sensing, satellites are able to rapidly advance in terms of their image resolution. As a result, satellites that use remote sensing have been applied to conduct research across many areas of the world. However, while research on remote sensing is being implemented across various areas, research on data processing is presently insufficient; that is, as satellite resources are further developed, data processing continues to lag behind. Accordingly, this paper discusses plans to maximize the performance of satellite image processing by utilizing the CUDA(Compute Unified Device Architecture) Library of NVIDIA, a parallel processing technique. The discussion in this paper proceeds as follows. First, standard KOMPSAT(Korea Multi-Purpose Satellite) images of various sizes are subdivided into five types. NDVI(Normalized Difference Vegetation Index) is implemented to the subdivided images. Next, ArcMap and the two techniques, each based on CPU or GPU, are used to implement NDVI. The histograms of each image are then compared after each implementation to analyze the different processing speeds when using CPU and GPU. The results indicate that both the CPU version and GPU version images are equal with the ArcMap images, and after the histogram comparison, the NDVI code was correctly implemented. In terms of the processing speed, GPU showed 5 times faster results than CPU. Accordingly, this research shows that a parallel processing technique using CUDA Library can enhance the data processing speed of satellites images, and that this data processing benefits from multiple advanced remote sensing techniques as compared to a simple pixel computation like NDVI.

Implementation of Parallel Computer Generated Hologram Using Multi-GPGPU (다중 GPGPU를 이용한 컴퓨터 생성 홀로그램의 병렬화 구현)

  • Seo, Young-Ho;Lee, Yoon-Hyuk;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1177-1186
    • /
    • 2014
  • Computer-generated hologram (CGH) is to mathematically model optical phenomenon with digital computer. Because it requires huge amount of computational power, a fast and high performance technique is needed. In this paper, we proposed two parallelizations for CGH calculation. The first is to parallelize CGH algorithm in a GPU (general processing unit) and the second is to parallelize multiple GPUs. The proposed algorithm was implemented in GTX780 Ti GPU. It calculates a $1,024{\times}1,024$ hologram with 10K object points for about 24ms.