• Title/Summary/Keyword: GPS trajectory

Search Result 140, Processing Time 0.025 seconds

THE SIMPLE METHOD OF GEOMETRIC RECONSTRUCTION FOR SPOT IMAGES

  • JUNG HYUNG-SUP;KIM SANG-WAN;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.205-207
    • /
    • 2004
  • The simple method of the geometric reconstruction of satellite linear pushbroom images is investigated. The model of the sensor used is based on the SPOT model that is developed by Kraiky. The satellite trajectory is a Keplerian trajectory in the approximation. Four orbital parameters, longitude of the ascending $node(\omega),$ inclination of the orbit plan(I), latitude argument of the satellite(W) and distance between earth center and satellite, are used for the camera modeling. We suppose that four orbital parameters and satellite attitude angles are exactly acquired. Then, in order to refine model, the given attitude angles and orbital parameters is not changed, but time-independent four parameters associated with LOS(Line Of Sight) vector is updated. A pair of SPOT-5 images has been used for validation of proposed method. Two GCPs acquired by GPS survey is used to controlling the LOS vector. The results are that the RMSE of 16 checking points are about 4.5m. Because the ground resolution of SPOT-5 is 2.5m, the result obtained in this study has a good accuracy. It demonstrates that the sensor model developed by this study can be used to reconstruct the geometry of satellite image taken by pushbroom camera.

  • PDF

Applications of Rotating Noise Source Positioning Using TDOA Algorithm (회전하는 소음원의 위치추적에 대한 TDOA기법의 적용)

  • Lee, Jong-Hyun;Lee, Ja-Hyung;Rhee, Wook;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.483-489
    • /
    • 2009
  • The Time Difference of Arrival (TDOA) algorithm is being used widely for identifying the location of a source emanating either electrical or acoustic signal. It's application areas will not be limited to identifying the source at a fixed location, for example the origin of an earthquake, but will also include the trajectory monitoring for a moving source equipped with a GPS sensor. Most of the TDOA algorithm uses time correlation technique to find the time delay between received signals, and therefore difficult to be used for identifying the location of multiple sources. In this paper a TDOA algorithm based on cross-spectrum is developed to find the trajectory of two sound sources with different frequencies. Although its application is limited to for the sources on a disk plane, but it can be applied for identifying the locations of more than two sources simultaneously.

  • PDF

Traffic Information Service Model Considering Personal Driving Trajectories

  • Han, Homin;Park, Soyoung
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.951-969
    • /
    • 2017
  • In this paper, we newly propose a traffic information service model that collects traffic information sensed by an individual vehicle in real time by using a smart device, and which enables drivers to share traffic information on all roads in real time using an application installed on a smart device. In particular, when the driver requests traffic information for a specific area, the proposed driver-personalized service model provides him/her with traffic information on the driving directions in advance by predicting the driving directions of the vehicle based on the learning of the driving records of each driver. To do this, we propose a traffic information management model to process and manage in real time a large amount of online-generated traffic information and traffic information requests generated by each vehicle. We also propose a road node-based indexing technique to efficiently store and manage location-based traffic information provided by each vehicle. Finally, we propose a driving learning and prediction model based on the hidden Markov model to predict the driving directions of each driver based on the driver's driving records. We analyze the traffic information processing performance of the proposed model and the accuracy of the driving prediction model using traffic information collected from actual driving vehicles for the entire area of Seoul, as well as driving records and experimental data.

An indoor localization system for estimating human trajectories using a foot-mounted IMU sensor and step classification based on LSTM

  • Ts.Tengis;B.Dorj;T.Amartuvshin;Ch.Batchuluun;G.Bat-Erdene;Kh.Temuulen
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 2024
  • This study presents the results of designing a system that determines the location of a person in an indoor environment based on a single IMU sensor attached to the tip of a person's shoe in an area where GPS signals are inaccessible. By adjusting for human footfall, it is possible to accurately determine human location and trajectory by correcting errors originating from the Inertial Measurement Unit (IMU) combined with advanced machine learning algorithms. Although there are various techniques to identify stepping, our study successfully recognized stepping with 98.7% accuracy using an artificial intelligence model known as Long Short-Term Memory (LSTM). Drawing upon the enhancements in our methodology, this article demonstrates a novel technique for generating a 200-meter trajectory, achieving a level of precision marked by a 2.1% error margin. Indoor pedestrian navigation systems, relying on inertial measurement units attached to the feet, have shown encouraging outcomes.

The method for extraction of meaningful places based on behavior information of user (실생활 정보를 이용한 사용자의 의미 있는 장소 추출 방법)

  • Lee, Seung-Hoon;Kim, Bo-Keong;Yoon, Tae-Bok;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.503-508
    • /
    • 2010
  • Recently, the advance of mobile devices has made various services possible beyond simple communication. One of services is the predicting the future path of users and providing the most suitable location based service based on the prediction results. Almost of these prediction methods are based on previous path data. Thus, calculating similarities between current location information and the previous trajectories for path prediction is an important operation. The collected trajectory data have a huge amount of location information generally. These information needs the high computational cost for calculating similarities. For reducing computational cost, the meaningful location based trajectory model approaches are proposed. However, most of the previous researches are considering only the physical information such as stay time and the distance for extracting the meaningful locations. Thus, they will probably ignore the characteristics of users for meaningful location extraction. In this paper, we suggest a meaningful location extracting and trajectory simplification approach considering the stay time, distance, and additionally interaction information of user. The method collects the location information using GPS device and interaction information between the user and the others. Using these data, the proposed method defines the proximity of the people who are related with the user. The system extracts the meaningful locations based on the calculated proximities, stay time and distance. Using the selected meaningful locations the trajectories are simplified. For verifying the usability of the proposed method, we collect the behavioral data of smart phone users. Using these data, we measure the suitability of meaningful location extraction method, and the accuracy of prediction approach based on simplified trajectories. Following these result, we confirmed the usability of proposed method.

Precise Positioning Algorithm Development for Quadrotor Flying Robots Using Dual Extended Kalman Filter (듀얼 확장 칼만 필터를 이용한 쿼드로터 비행로봇 위치 정밀도 향상 알고리즘 개발)

  • Seung, Ji-Hoon;Lee, Deok-Jin;Ryu, Ji-Hyoung;Chong, Kil To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.158-163
    • /
    • 2013
  • The fusion of the GPS (Global Positioning System) and DR (Dead Reckoning) is widely used for position and latitude estimation of vehicles such as a mobile robot, aerial vehicle and marine vehicle. Among the many types of aerial vehicles, grater focus is given on the quad-rotor and accuracy of the position information is becoming more important. In order to exactly estimate the position information, we propose the fusion method of GPS and Gyroscope sensor using the DEKF (Dual Extended Kalman Filter). The DEKF has an advantage of simultaneously estimating state value and a parameter of dynamical system. It can also be used even if state value is not available. In order to analyze the performance of DEKF, the computer simulation for estimating the position, the velocity and the angle in a circle trajectory of quad-rotor was done. As it can be seen from the simulation results using own proposed DEKF instead of EKF on own fusion method in the navigation of a quad-rotor gave better performance values.

Autonomous Flight Experiment of a Foldable Quadcopter with Airdrop Launching Function (고공 비행개시가 가능한 접이식 쿼더콥터 자율비행 실험)

  • Lee, Cheonghwa;Chu, Baeksuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.109-117
    • /
    • 2018
  • The experimental results are presented of an autonomous flight algorithm of a foldable quadcopter with airdrop launching functions. A foldable wing structure enabled the quadcopter to be inserted into a rocket container with limited space. The foldable quadcopter was then separated from the rocket in the air. The flight pattern was tracked using a global positioning system (GPS) with various sensors, including an inertial measurement unit (IMU) module until a designated target position was reached. Extensive field tests were conducted through an international rocket competition, ARLISS 2017, which was held in Black Rock Desert, Nevada, USA. The flight trajectory record of the experiments is stored in electrically erasable programmable read-only memory (EEPROM) embedded in the main control unit. The flight record confirmed that the quadcopter successfully separated from the rocket, executed flight toward the target for a certain length of time, and stably landed on the ground.

FADA: A fuzzy anomaly detection algorithm for MANETs (모바일 애드-혹 망을 위한 퍼지 비정상 행위 탐지 알고리즘)

  • Bae, Ihn-Han
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1125-1136
    • /
    • 2010
  • Lately there exist increasing demands for online abnormality monitoring over trajectory stream, which are obtained from moving object tracking devices. This problem is challenging due to the requirement of high speed data processing within limited space cost. In this paper, we present a FADA (Fuzzy Anomaly Detection Algorithm) which constructs normal profile by computing mobility feature information from the GPS (Global Positioning System) logs of mobile devices in MANETs (Mobile Ad-hoc Networks), computes a fuzzy dissimilarity between the current mobility feature information of the mobile device and the mobility feature information in the normal profile, and detects effectively the anomaly behaviors of mobile devices on the basis of the computed fuzzy dissimilarity. The performance of proposed FADA is evaluated through simulation.

Smart Flying-Disc Monitoring System with IoT Technology (IoT 기술이 적용된 스마트 플라잉 디스크 모니터링 시스템 구축)

  • Lee, Jung-Chul;Jang, Young-Jong;Hwang, Tae-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.991-1000
    • /
    • 2019
  • The flying-disc game has started since 1940. It has been spreading rapidly in Korea since 2007, mainly in elementary schools. Additionally, as sports science has been developed, research on flying discs has been continued to build a monitoring system for technological improvement and efficiency. In this paper, we acquire information on the user's flying-disc using 9-axis motion sensor and GPS. Then we propose a method for wireless transmission using Bluetooth 5.0. Specifically, the HW platform was designed and implemented not only to monitor a real-time data but also to compare and analyze rotational speed, flight trajectory, and a count of disc rotation through post-processing.

Optimal evacuation route guidance system using recreational forest 3D scan data (휴양림 3D 스캔 데이터를 통한 최적 대피로 안내 시스템)

  • Jung, Sanghun;Gwon, Eunhye;Son, Hoon;Kang, Soyoung;Jung, Heokyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.258-259
    • /
    • 2021
  • Forest lodge are divided into forest resources, auxiliary facilities, and users, and are constantly being used along with well-being culture. In addition, attention to the safety of users is also required, and this study aims to study how users evacuate within a short time (golden time) in situations of natural disasters that may occur in forests. In order to search for the current location of the user and find the best evacuation route, 3D scans of the entire forest lodge(forest resources, auxiliary facilities, etc.) are performed, and the optimal trajectory to the evacuation site is found through recognition of the current location. It is believed that it is possible to provide a quick evacuation guide through a mobile device with gps.

  • PDF