• Title/Summary/Keyword: GPS positioning error

Search Result 373, Processing Time 0.026 seconds

A Novel Side-Peak Cancellation Method for BOC Signal Synchronization (BOC 신호 동기화를 위한 새로운 주변 첨두 제거 기법)

  • Kim, Sang-Hun;Yoon, Tae-Ung;Lee, Young-Yoon;Han, Tae-Hee;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.131-137
    • /
    • 2009
  • Binary offset carrier (BOC) signal synchronization is one of the most important steps to recover the transmitted information in global navigation satellite systems (GNSS) including Galileo and global positioning system (GPS). Generally, BOC signal synchronization is based on the correlation between the received and locally generated BOC signals. Thus, the multiple side-peaks in BOC autocorrelation are one of the main error sources in synchronizing BOC signals. Recently, a novel correlation function with reduced side-peaks was proposed for BOC signal synchronization by Julien [8]; however, Julien's correlation function not only still has the side-peaks, but also is only applicable to sine phased BOC(n, n), where n is the ratio of the pseudo random noise (PRN) code rate to 1.023 MHz. In this paper, we propose a new correlation function for BOC signal synchronization, which does not have any side-peaks and is applicable to general types of BOC signals, sine/cosine phased BOC(kn, n), where k is the ratio of a PRN chip duration to the period of a square wave sub-carrier used in BOC modulation. In addition, an efficient correlator structure is presented for generating the proposed correlation function.

Low energy ultrasonic single beacon localization for testing of scaled model vehicle

  • Dubey, Awanish C.;Subramanian, V. Anantha;Kumar, V. Jagadeesh
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.391-407
    • /
    • 2019
  • Tracking the location (position) of a surface or underwater marine vehicle is important as part of guidance and navigation. While the Global Positioning System (GPS) works well in an open sea environment but its use is limited whenever testing scaled-down models of such vehicles in the laboratory environment. This paper presents the design, development and implementation of a low energy ultrasonic augmented single beacon-based localization technique suitable for such requirements. The strategy consists of applying Extended Kalman Filter (EKF) to achieve location tracking from basic dynamic distance measurements of the moving model from a fixed beacon, while on-board motion sensor measures heading angle and velocity. Iterative application of the Extended Kalman Filter yields x and y co-ordinate positions of the moving model. Tests performed on a free-running ship model in a wave basin facility of dimension 30 m by 30 m by 3 m water depth validate the proposed model. The test results show quick convergence with an error of few centimeters in the estimated position of the ship model. The proposed technique has application in the real field scenario by replacing the ultrasonic sensor with industrial grade long range acoustic modem. As compared with the existing systems such as LBL, SBL, USBL and others localization techniques, the proposed technique can save deployment cost and also cut the cost on number of acoustic modems involved.

Performance of Vehicle Detection Using Alamouti for ITS (ITS를 위한 Alamouti 기법을 이용한 차량 검출 성능 분석)

  • Kim, Seung-Jong;Park, In-Hwan;Kim, Jin-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.3
    • /
    • pp.79-84
    • /
    • 2011
  • In this paper, we analyzed performance of vehicle detection for ITS (Intelligent Transport System) applications. We simulated the vehicle detection at Hi-Pass System is based on DSRC (Dedicated Short Range Communication). DSRC is a wireless network using ITS, including GPS (Global Positioning System) satellites in conjunction with the national transportation system. The system performance is evaluated in terms of bit error probability. In the simulation, the vehicle speed is set at 60 km/h and carrier frequency is 5.8 GHz. Wireless channel is modeled as the Rician fading channel. In the transmitter, the ASK (amplitude shift keying) modulation scheme is applied. From simulation results, we confirmed that performance of applied Alamouti scheme is better than other systems.

A Real-time and Off-line Localization Algorithm for an Inpipe Robot by Detecting Elbows (엘보 인식에 의한 배관로봇의 실시간 위치 추정 및 후처리 위치 측정 알고리즘)

  • Lee, Chae Hyeuk;Kim, Gwang Ho;Kim, Jae Jun;Kim, Byung Soo;Lee, Soon Geul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1044-1050
    • /
    • 2014
  • Robots used for pipe inspection have been studied for a long time and many mobile mechanisms have been proposed to achieve inspection tasks within pipelines. Localization is an important factor for an inpipe robot to perform successful autonomous operation. However, sensors such as GPS and beacons cannot be used because of the unique characteristics of inpipe conditions. In this paper, an inpipe localization algorithm based on elbow detection is presented. By processing the projected marker images of laser pointers and the attitude and heading data from an IMU, the odometer module of the robot determines whether the robot is within a straight pipe or an elbow and minimizes the integration error in the orientation. In addition, an off-line positioning algorithm has been performed with forward and backward estimation and Procrustes analysis. The experimental environment has consisted of several straight pipes and elbows, and a map of the pipeline has been constructed as the result.

Ionospheric Storm and Spatial Gradient Analysis for GBAS

  • Kim, Jeong-Rae;Yang, Tae-Hyoung;Lee, Young-Jae;Jun, Hyang-Sig;Nam, Gi-Wook
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.361-365
    • /
    • 2006
  • High ionospheric spatial gradient during ionospheric storm is most concern for the landing approach with GNSS (Global Navigation Satellite System) augmentation systems. In case of the GBAS (Ground-Based Augmentation System), the ionospheric storm causes sudden increase of the ionospheric delay difference between a ground facility and a user (aircraft), and the aircraft position error increases significantly. Since the ionosphere behavior and the storm effect depend on geographic location, understanding the ionospheric storm behavior at specific regional area is crucial for the GNSS augmentation system development and implementation. Korea Aerospace Research Institute and collaborating universities have been developing an integrity monitoring test bed for GBAS research and for future regional augmentation system development. By using the dense GPS (Global Positioning System) networks in Korea, a regional ionosphere map is constructed for finding detailed aspect of the ionosphere variation. Preliminary analysis on the ionospheric gradient variation during a recent storm period is performed and the results are discussed.

  • PDF

Development of an Autonomous Tractor System Using Remote Information Processing (원격 정보처리를 이용한 자율주행 트랙터 시스템의 개발)

  • 조도연;조성인
    • Journal of Biosystems Engineering
    • /
    • v.25 no.4
    • /
    • pp.301-310
    • /
    • 2000
  • An autonomous tractor system was developed and its performance was evaluated. The system consisted of a tractor system of and a remote control station. The tractor and the remote control station communicated each other via wireless modems. The tractor had a DGPS(differential global positioning system), sensors, a controller and a modem. The DGPS collected position data and the tractor status was estimated. The information of tractor status and sensors was transferred to the remote control station. Then, the control station determined the control data such as steering angles using a fuzzy controller. The fuzzy controller used the information from the DGPS, sensors, and GIS(geographic information system) data. The control data were obtained by remote signal processing at the control station The control data for autonomous operation were transferred to the tractor controller. The performances of an autonomous tractor were evaluated for various speeds, different initial positions and different initial headings. About 1.3 seconds of time lag was occurred in transferring the tractor status data and the control data. Compensation the time lag, about 27cm deviation was observed at the speed of 0.5m/s and 37cm at the speed of 1m/s. Error caused mainly by the time lag and it would be reduced by developing a full-duplex radio module for controlling the remote tractor.

  • PDF

Assessment of Possibility of Adopting the Error Tolerance of Geometric Correction on Producing 1/5,000 Digital Topographic Map for Unaccessible Area Using the PLEIADES Images and TerraSAR Control Point (PLEIADES 영상과 TerraSAR 기준점을 활용한 비접근지역의 1/5,000 수치지형도 제작을 위한 기하보정의 허용오차 만족 가능성 평가)

  • Jin Kyu, Shin;Young Jin, Lee;Gyung Jong, Kim;Jun Hyuk, Lee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.2
    • /
    • pp.83-94
    • /
    • 2015
  • Recently, the necessity of spatial data in unaccessible area was challenged to set up various plans and policies for preparing the unification and the cooperative projects between South-North Korea. Therefore, this paper planned to evaluate the possibility of adopting the error tolerance in Geometric correction for 1/5,000 digital topographic mapping, using the PLEIADES images and the TerraSAR GCPs (Ground Control Points). The geometric correction was performed by changing the number and placement of GCPs by GPS (Global Positioning System) surveying, as the optimal placement of 5 GCPs were selected considering the geometric stability and steady rate. The positional accuracy evaluated by the TerraSAR GCPs, which were selected by optimal placement of GCPs. The RMSE in control points were X=±0.64m, Y=±0.46m, Z=±0.28m. While the result of geometric correction for PLEIADES images confirmed that the RMSE in control points were X=±0.34m, Y=±0.27m, Z=±0.11m, the RMSE in check points were X=±0.50m, Y=±0.30m, Z=±0.66m. Through this study, we believe if spatial data can integrate with the PLEIADES images and the optimal TerraSAR GCPs, it will be able to obtain the high-precision spatial data for adopting the regulation of 1/5,000 digital topographic map, which adjusts the computation as well as the error bound.

Performance Improvement of Real Time On-board Orbit Determination using High Precision Orbit Propagator (고정밀 섭동모델을 이용한 실시간 On-board 궤도 결정 성능 향상)

  • Kim, Eun-Hyouek;Lee, Byung-Hoon;Park, Sung-Baek;Jin, Hyeun-Pil;Lee, Hyun-Woo;Jeong, Yun-Hwang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.781-788
    • /
    • 2016
  • In this paper, a real-time on-board orbit determination algorithm using the high precise orbit propagator is suggested and its performance is analyzed. Orbit determination algorithm is designed with the Extended Kalman Filter. And it utilizes the orbit calculated from the Pseudo-range as observed data. The performance of the on-board orbit determination method implemented in the GPS-12 receiver is demonstrated using the GNSS simulator. Orbit determination performance using high precise orbit propagator was analyzed in comparison to the orbit determination result using $J_2$ orbit propagator. The analysis result showed that position and velocity error are improved from 43.61 m($3{\sigma}$) to 23.86 m($3{\sigma}$) and from 0.159 m/s($3{\sigma}$) to 0.044 m/s($3{\sigma}$) respectively.

Inland ASF Measurement by Signal of the 9930M Station (9930M국 로란-C 신호를 이용한 내륙 ASF 측정 연구)

  • Yang, Sung-Hoon;Lee, Chang-Bok;Lee, Jong-Koo;Kim, Young-Jae;Lee, Sang-Jeong
    • Journal of Navigation and Port Research
    • /
    • v.34 no.8
    • /
    • pp.603-607
    • /
    • 2010
  • The LORAN system had been used widely and it was an essential navigation aid for ships in the ocean until the GPS is adopted actively. In particular, it was essential functionality for the ships to sail the oceans. According to the advancement of industry, however, the current accuracy of traditional Loran is insufficient for the utilization of harbour approach, land navigation, and the field of survey and timing. Therefore it is necessary that the study on the improvement of the positioning accuracy of Loran. The one of the improving methods is to measure and compensate the propagation time delay between the transmitter and user's receiver, which is called as additional secondary factor (ASF). In this study, we measured the ASF between the Pohang master transmitting station (9930M) and four points where locate within 33 km apart from the transmitting station, using the measuring technique of the absolute time delay without a time of coincidence (TOC) table. As the result of measurement, the ranging error caused by the propagation delay was about 210 m at 33 km, however it can be reduced up to 40 m with ASF compensation.

A Maximum Likelihood Estimator Based Tracking Algorithm for GNSS Signals

  • Won, Jong-Hoon;Pany, Thomas;Eissfeller, Bernd
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.15-22
    • /
    • 2006
  • This paper presents a novel signal tracking algorithm for GNSS receivers using a MLE technique. In order to perform a robust signal tracking in severe signal environments, e.g., high dynamics for navigation vehicles or weak signals for indoor positioning, the MLE based signal tracking approach is adopted in the paper. With assuming white Gaussian additive noise, the cost function of MLE is expanded to the cost function of NLSE. Efficient and practical approach for Doppler frequency tracking by the MLE is derived based on the assumption of code-free signals, i.e., the cost function of the MLE for carrier Doppler tracking is used to derive a discriminator function to create error signals from incoming and reference signals. The use of the MLE method for carrier tracking makes it possible to generalize the MLE equation for arbitrary codes and modulation schemes. This is ideally suited for various GNSS signals with same structure of tracking module. This paper proposes two different types of MLE based tracking method, i.e., an iterative batch processing method and a non-iterative feed-forward processing method. The first method is derived without any limitation on time consumption, while the second method is proposed for a time limited case by using a 1st derivative of cost function, which is proportional to error signal from discriminators of conventional tracking methods. The second method can be implemented by a block diagram approach for tracking carrier phase, Doppler frequency and code phase with assuming no correlation of signal parameters. Finally, a state space form of FLL/PLL/DLL is adopted to the designed MLE based tracking algorithm for reducing noise on the estimated signal parameters.

  • PDF