• 제목/요약/키워드: GPS compass

검색결과 79건 처리시간 0.027초

트랜스포터 운행관제용 저가형 INS 자세에 관한 연구 (A Study of The Attitude of Low-Cost INS for Transporters)

  • 손영득;이영호;이규찬;박상경;박옥득;김한실
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2588-2590
    • /
    • 2005
  • This paper presents an three dimension attitude of inertial navigation system(INS) for managing a transporter in shipyard by using low-cost inertial sensors. The GPS(Global Positioning System) shade field prevents from receiving information of position through GPS satellites, GIS(Geographic Information System) in shipyard, therefore TNS system plays an important part. This system is composed of tiny low-cost gyroscopes, accelerometers and a magnetic compass, and 3-dimension position is estimated by an indirect Kalman filter using the outputs of these inertial sensors.

  • PDF

실해역 환경에서 무인 잠수정의 초기 상태 정렬을 위한 GPS와 관성 항법 센서 기반 항법 정렬 알고리즘 (GPS and Inertial Sensor-based Navigation Alignment Algorithm for Initial State Alignment of AUV in Real Sea)

  • 김규현;이지홍;이필엽;김호성;이한솔
    • 로봇학회논문지
    • /
    • 제15권1호
    • /
    • pp.16-23
    • /
    • 2020
  • This paper describes an alignment algorithm that estimates the initial heading angle of AUVs (Autonomous Underwater Vehicle) for starting navigation in a sea area. In the basic dead reckoning system, the initial orientation of the vehicle is very important. In particular, the initial heading value is an essential factor in determining the performance of the entire navigation system. However, the heading angle of AUVs cannot be measured accurately because the DCS (Digital Compass) corrupted by surrounding magnetic field in pointing true north direction of the absolute global coordinate system (not the same to magnetic north direction). Therefore, we constructed an experimental constraint and designed an algorithm based on extended Kalman filter using only inertial navigation sensors and a GPS (Global Positioning System) receiver basically. The value of sensor covariance was selected by comparing the navigation results with the reference data. The proposed filter estimates the initial heading angle of AUVs for navigation in a sea area and reflects sampling characteristics of each sensor. Finally, we verify the performance of the filter through experiments.

DWT/UKF를 이용한 수면 BEACON의 위치추정 (Estimated Position of Sea-Surface Beacon Using DWT/UKF)

  • 윤바다;윤하늘;최성희;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.341-348
    • /
    • 2013
  • A location estimation algorithm based on the sea-surface beacon is proposed in this paper. The beacon is utilized to provide ultrasonic signals to the underwater vehicles around the beacon to estimate precise position of underwater vehicles (ROV, AUV, Diver robot), which is named as USBL (Ultra Short Baseline) system. It utilizes GPS and INS data for estimating its position and adopts DWT (Discrete Wavelet Transform) de-noising filter and UKF (Unscented KALMAN Filter) elaborating the position estimation. The beacon system aims at estimating the precise position of underwater vehicle by using USBL to receive the tracking signals. The most important one for the precise position estimation of underwater vehicle is estimating the position of the beacon system precisely. Since the beacon is on the sea-waves, the received GPS signals are noisy and unstable most of times. Therefore, the INS data (gyroscope sensor, accelerometer, magnetic compass) are obtained at the beacon on the sea-surface to compensate for the inaccuracy of the GPS data. The noises in the acceleration data from INS data are reduced by using DWT de-noising filter in this research. Finally the UKF localization system is proposed in this paper and the system performance is verified by real experiments.

선체 블록 물류관리를 위한 위치추적 시스템 연구 (Study on the Positioning System for Logistics of Ship-block)

  • 이영호;이규찬;이길종;손영득
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2008년도 특별논문집
    • /
    • pp.68-75
    • /
    • 2008
  • This paper describes the design and implementation of a low cost inertial navigation system(INS) using an inertial measurement unit(IMU), a digital compass, GPS, and an embedded system. The system has been developed for a transporter that load and unload ship blocks in a shipbuilding yard. When the transporter would move from place to place, they would periodically pass under obstructions that would obscure the GPS signal. This increases the error when estimating the position. Thus the INS has been used to improve position accuracy. INS is also capable of providing continuous estimates of the transporter's position and orientation. Even though IMU is typically very expensive, this INS is made of "low cost" components and the indirect Kalman filtering algorithm.

  • PDF

야지환경에서 연합형 필터 기반의 다중센서 융합을 이용한 무인지상로봇 위치추정 (UGV Localization using Multi-sensor Fusion based on Federated Filter in Outdoor Environments)

  • 최지훈;박용운;주상현;심성대;민지홍
    • 한국군사과학기술학회지
    • /
    • 제15권5호
    • /
    • pp.557-564
    • /
    • 2012
  • This paper presents UGV localization using multi-sensor fusion based on federated filter in outdoor environments. The conventional GPS/INS integrated system does not guarantee the robustness of localization because GPS is vulnerable to external disturbances. In many environments, however, vision system is very efficient because there are many features compared to the open space and these features can provide much information for UGV localization. Thus, this paper uses the scene matching and pose estimation based vision navigation, magnetic compass and odometer to cope with the GPS-denied environments. NR-mode federated filter is used for system safety. The experiment results with a predefined path demonstrate enhancement of the robustness and accuracy of localization in outdoor environments.

무인모선기반 무인잠수정의 3차원 위치계측 기법에 관한 연구 (A Study on a 3-D Localization of a AUV Based on a Mother Ship)

  • 임종환;강철웅;김성근
    • 한국해양공학회지
    • /
    • 제19권2호
    • /
    • pp.74-81
    • /
    • 2005
  • A 3-D localization method of an autonomous underwater vehicle (AUV) has been developed, which can solve the limitations oj the conventional localization, such as LBL or SBL that reduces the flexibility and availability of the AUV. The system is composed of a mother ship (small unmanned marine prober) on the surface of the water and an unmanned underwater vehicle in the water. The mother ship is equipped with a digital compass and a GPS for position information, and an extended Kalman filter is used for position estimation. For the localization of the AUV, we used only non-inertial sensors, such as a digital compass, a pressure sensor, a clinometer, and ultrasonic sensors. From the orientation and velocity information, a priori position of the AUV is estimated by applying the dead reckoning method. Based on the extended Kalman filter algorithm, a posteriori position of the AUV is, then, updated by using the distance between the AUV and a mother ship on the surface of the water, together with the depth information from the pressure sensor.

Design of Multi-Sensor-Based Open Architecture Integrated Navigation System for Localization of UGV

  • Choi, Ji-Hoon;Oh, Sang Heon;Kim, Hyo Seok;Lee, Yong Woo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제1권1호
    • /
    • pp.35-43
    • /
    • 2012
  • The UGV is one of the special field robot developed for mine detection, surveillance and transportation. To achieve successfully the missions of the UGV, the accurate and reliable navigation data should be provided. This paper presents design and implementation of multi-sensor-based open architecture integrated navigation for localization of UGV. The presented architecture hierarchically classifies the integrated system into four layers and data communications between layers are based on the distributed object oriented middleware. The navigation manager determines the navigation mode with the QoS information of each navigation sensor and the integrated filter performs the navigation mode-based data fusion in the filtering process. Also, all navigation variables including the filter parameters and QoS of navigation data can be modified in GUI and consequently, the user can operate the integrated navigation system more usefully. The conventional GPS/INS integrated system does not guarantee the long-term reliability of localization when GPS solution is not available by signal blockage and intentional jamming in outdoor environment. The presented integration algorithm, however, based on the adaptive federated filter structure with FDI algorithm can integrate effectively the output of multi-sensor such as 3D LADAR, vision, odometer, magnetic compass and zero velocity to enhance the accuracy of localization result in the case that GPS is unavailable. The field test was carried out with the UGV and the test results show that the presented integrated navigation system can provide more robust and accurate localization performance than the conventional GPS/INS integrated system in outdoor environments.

다중 위성항법시스템 이용조건에 따른 위성측위 성능 분석 (Analysis of Positioning Performance According to the Condition of Multi-constellation GNSS)

  • 박준규;엄대용
    • 한국산학기술학회논문지
    • /
    • 제17권4호
    • /
    • pp.567-572
    • /
    • 2016
  • GPS의 도입과 함께 위성항법시스템과 관련된 많은 연구들이 수행되었으며 이를 통해 위성항법시스템을 이용한 위치 결정의 활용성이 충분히 제시되었다. 하지만 대부분의 연구가 정확도 부분에 초점을 맞추고 있으며 현재 빠르게 발전하고 있는 위성항법시스템과 관련 국가 인프라에 대한 분석적 연구는 부족한 실정이다. 이에 본 연구에서는 현재 다중 위성항법 시스템과 국토지리정보원의 위성기준점의 현황을 파악하고, 실험을 통해 측위성능 향상을 위한 위성측량 인프라 고도화의 방향과 이에 따른 기대효과를 제시하고자 하였다. 연구를 통해 GPS, GLONASS 뿐만 아니라 Galileo, COMPASS, QZSS 등 다중 위성항법시스템이 측량에 적용할 수 있을 정도로 운영되고 있음을 알 수 있었다. 또한 기존 GPS와 GLONASS만을 이용한 VRS 서비스와 다중 위성항법 시스템을 활용하는 경우의 비교를 통해 가용 위성 수, 정밀도, PDOP 등 다중 위성항법시스템 활용에 대한 정량적인 개선점을 제시하고, 위성측량 인프라 고도화를 위해 우선적으로 고려해야할 사항들을 도출하였다. 향후 VRS에서 다중 위성항법 서비스가 가능해 진다면 도심에서 GNSS 측량 요구가 증가하고 있는 현재 대민서비스 만족도를 크게 재고할 것이며, 측량 인프라 선진화에 크게 기여할 것이다.

GNSS 구축 환경변화와 현대무기체계에의 항법기술 사용전략 (Circumstance Change of GNSS & Application Strategy of Navigation Technology for Modem Weapon System)

  • 고광섭
    • 한국정보통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.267-275
    • /
    • 2010
  • 미국, 러시아, 유럽연합 및 중국의 인공위성 항법 시스템 현대화 정책 추진 가속화 및 위성항법 기술 발전으로 2015년까지 무려 100기 정도의 항법 위성이 우주궤도에 배치될 것으로 전망된다. 이러한 각국의 경쟁적인 위성항법 시스템 개발은 현재 GPS 일변도의 전 세계 위성항법 시스템 의존도를 획기적으로 낮출 뿐 아니라 위성항법 신호의 다원화로 민간사용 분야는 물론 군사 분야에서도 많은 변화가 예상된다. 본 연구에서는 급변하는 전 세계 위성항법 시스템구축 환경 변화에 따른 정책 및 기술 특성을 분석하여 미래 인공위성 항법 기술사용 및 국방과학 분야 접목에 대한 우리의 대응전략을 제시하고자 한다.

A Highly Secure Identity-Based Authenticated Key-Exchange Protocol for Satellite Communication

  • Yantao, Zhong;Jianfeng, Ma
    • Journal of Communications and Networks
    • /
    • 제12권6호
    • /
    • pp.592-599
    • /
    • 2010
  • In recent years, significant improvements have been made to the techniques used for analyzing satellite communication and attacking satellite systems. In 2003, a research team at Los Alamos National Laboratory, USA, demonstrated the ease with which civilian global positioning system (GPS) spoofing attacks can be implemented. They fed fake signals to the GPS receiver so that it operates as though it were located at a position different from its actual location. Moreover, Galileo in-orbit validation element A and Compass-M1 civilian codes in all available frequency bands were decoded in 2007 and 2009. These events indicate that cryptography should be used in addition to the coding technique for secure and authenticated satellite communication. In this study, we address this issue by using an authenticated key-exchange protocol to build a secure and authenticated communication channel for satellite communication. Our protocol uses identity-based cryptography. We also prove the security of our protocol in the extended Canetti-Krawczyk model, which is the strongest security model for authenticated key-exchange protocols, under the random oracle assumption and computational Diffie-Hellman assumption. In addition, our protocol helps achieve high efficiency in both communication and computation and thus improve security in satellite communication.