• Title/Summary/Keyword: GPS antenna

Search Result 337, Processing Time 0.03 seconds

A Study on the Development of an RFID System for Recreational Boating Safety (RFID 기술을 활용한 해양인명구조 시스템 개발에 관한 연구)

  • Yang, Dong-Shin;Sung, Chul;Choi, Tae-Sung
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.119-123
    • /
    • 2006
  • Finding out the exact location of survivors in short period of time is critical to conduct rescue activity successfully in oceans. Current technology with natural circumstances limits the activity that our efforts come along. R&D Center housed at Korea Coast Guard (KCG) has developed the system named "RFID for Life jacket" which enables us to access the location of persons under distressed situation. The RFID has been widely known as state-of-art technology to monitor the location even in inland or in ocean. Composed of tag, antenna. reader and middleware, RFID is attached to attached to a life jacket that people usually wears in recreational activity. By conducting experiments in pilot-scale several times, successful results showing 96.7% of transmission within 3.5km in diameter were produced. This study explains the routes of experiments to reach the goal and expected results coming from this accomplishments.

  • PDF

Home Range Analysis of Great Tit (Parus major) before and after Fledging in an Urban Park (도시공원에 번식하는 박새의 이소 전후 어미 행동권 분석)

  • Song, Won-Kyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.1
    • /
    • pp.97-106
    • /
    • 2020
  • Urban parks provide a variety of ecosystem services and are an important means of providing positive functions to urban ecosystems. Recently, various studies on wildlifes in urban parks have been conducted. However, there is a lack of research on habitat use in urban parks at important times such as before and after fledging in bird ecology. This study analyzed habitat use and home-range before and after fledging on Cheongsa park, a neighborhood park located in Cheonan city. An artificial nest was set up to check and capture great tit in fledging time. One female was captured and attached to the NTQB-2 (0.4g) radio transmitter, the location was tracked using SIKA Radio Tracking Receiver, hand-held three element Yagi antenna and GPS. Location information was recorded for 10 minutes for 3 hours each morning and afternoon for 12 days from May 17 to May 31, 2019. As a result, the home-range of the target species was 1.776 ha (MCP) and the core area was 499 ㎡ (KD 50%). The average daily home-range was 0.513 ha for the entire period, 0.688 ha before fledging, 0.339 ha after fledging based on MCP. The bird moved about 29.9 m on average and moved up to 131.7 m. For the most of the time, the great tit stayed inside the park, but the bird also used small green spaces such as street trees, tree flower beds, and green areas of unused lands. The results of this study could be applied to the study of habitat use and the greenery management policy of the urban park considering wild birds.

A Time Comparison Measurement Technique for eLoran Receivers (시각비교를 위한 eLoran 수신기 지연측정 기술)

  • Lee, Chang-Bok;Lee, Jong-Koo;Lee, Young-Kyu;Hwang, Sang-wook;Yang, Sung-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.40 no.6
    • /
    • pp.385-390
    • /
    • 2016
  • ELoran Systems can provide Position, Navigation, and Time services with comparable performance to Global Positioning Systems (GPS) as a back up or alternative system. High timing and navigation performance can be achieved by eLoran signals because eLoran receivers use "all-in-view" reception. This incorporates Time of Arrival (TOA) signals from all stations in the service range because each eLoran station is synchronized to Coordinated Universal Time (UTC). Transmission station information and the differential Loran correction data are transmitted via an additional Loran Data Channel (LDC) on the transmitted eLoran signal such that eLoran provides improved Position Navigation and Timing (PNT) over legacy Loran. In this paper, we propose a technique for adapting the delay time compensation values in eLoran timing receivers to provide precise time comparison. For this purpose, we have designed a system that measures time delay from the crossing point of the third cycle extracted from the current transformer at the end point of the transmitter. The receiver delay was measured by connecting an active H-field, an E-field and a passive loop antenna to a commercial eLoran timing receiver. The common-view time transfer technique using the calibrated eLoran timing receiver improved the eLoran transfer time. A eLoran timing receiver calibrated by this method can be utilized in the field for precise time comparison as a GNSS backup.

Localization Algorithm in Wireless Sensor Networks using the Acceleration sensor (가속도 센서를 이용한 무선 센서 네트워크하에서의 위치 인식 알고리즘)

  • Hong, Sung-Hwa;Jung, Suk-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1294-1300
    • /
    • 2010
  • In an environment where all nodes move, the sensor node receives anchor node's position information within communication radius and modifies the received anchor node's position information by one's traveled distance and direction in saving in one's memory, where if there at least 3, one's position is determined by performing localization through trilateration. The proposed localization mechanisms have been simulated in the Matlab. In an environment where certain distance is maintained and nodes move towards the same direction, the probability for the sensor node to meet at least 3 anchor nodes with absolute coordinates within 1 hub range is remote. Even if the sensor node has estimated its position with at least 3 beacon information, the angle ${\theta}$ error of accelerator and digital compass will continuously apply by the passage of time in enlarging the error tolerance and its estimated position not being relied. Dead reckoning technology is used as a supplementary position tracking navigation technology in places where GPS doesn't operate, where one's position can be estimated by knowing the distance and direction the node has traveled with acceleration sensor and digital compass. The localization algorithm to be explained is a localization technique that uses Dead reckoning where all nodes are loaded with omnidirectional antenna, and assumes that one's traveling distance and direction can be known with accelerator and digital compass. The simulation results show that our scheme performed better than other mechanisms (e.g. MCL, DV-distance).

A Study on Adaptive Pilot Beacon for Hard Handoff at CDMA Communication Network (CDMA 통신망의 하드핸드오프 지원을 위한 적응형 파일럿 비콘에 관한 연구)

  • Jeong Ki Hyeok;Hong Dong Ho;Hong Wan Pyo;Ra Keuk Hwawn
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10A
    • /
    • pp.922-929
    • /
    • 2005
  • This paper proposes an adaptive pilot beacon equipment for mobile communication systems based on direct spread spectrum technology which generates the pilot channel for handoff between base stations by using the information acquired from the downstream wireless signal regarding the overhead channel information. Such an adaptive pilot beacon equipment will enable low power operation since among the wireless signals, only the pilot channel will be generated and transmitted. The pilot channel in the downstream link of the CDMA receiver is used to acquire time and frequency synchronization and this is used to calibrate the offset for the beacon, which implies that time synchronization using GPS is not required and any location where forward receive signal can be received can be used as the installation site. The downstream link pilot signal searching within the CDMA receiver is performed by FPGA and DSP. The FPGA is used to perform the initial synchronization for the pilot searcher and DSP is used to perform the offset correction between beacon clock and base station clock. The CDMA transmitter the adaptive pilot beacon equipment will use the timing offset information in the pilot channel acquired from the CDMA receiver and generate the downstream link pilot signal synchronized to the base station. The intermediate frequency signal is passed through the FIR filter and subsequently upconverted and amplified before being radiated through the antenna.

Analysis of the Optimal Degree and Order of Spherical Harmonics for the GNSS Receiver Antenna's PCV Correction (GNSS 수신기 안테나의 PCV 보정 모델 산출을 위한 구면조화함수 최적차수 분석)

  • Kim, Jin Yi;Won, Ji Hye;Park, Kwan Dong;Seo, Seung Woo;Park, Heung Won
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.113-119
    • /
    • 2014
  • The positioning accuracy of GNSS surveys deteriorates due to various error factor, and many users sometimes ignore Phase Center Variation (PCV) of antennas. IGS provides an ANTEX file which contains PCV correction information to correct for PCVs. But it is not directly applicable because PCV correction information is provided at 5-degree intervals in the azimuth and elevation directions for the case of receiver antennas, and at 1-degree intervals in the nadir angle for the case of satellite antennas. So, we devised new and optimal ways of interpolating PCV in any desired line of sight to the GNSS satellite. We used spherical harmonics fitting methods in terms of the azimuth and elevation angle for interpolation, and found an optimal degree and order. It is shown that the best accuracy was obtained from the 8 by 8 spherical harmonics. If one requires lower burden on computing resources, the order and degree less than 8 could produce resonable accuracy except for 1st and 5th order.

GNSS Software Receivers: Sampling and jitter considerations for multiple signals

  • Amin, Bilal;Dempster, Andrew G.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.385-390
    • /
    • 2006
  • This paper examines the sampling and jitter specifications and considerations for Global Navigation Satellite Systems (GNSS) software receivers. Software radio (SWR) technologies are being used in the implementation of communication receivers in general and GNSS receivers in particular. With the advent of new GPS signals, and a range of new Galileo and GLONASS signals soon becoming available, GNSS is an application where SWR and software-defined radio (SDR) are likely to have an impact. The sampling process is critical for SWR receivers, where it occurs as close to the antenna as possible. One way to achieve this is by BandPass Sampling (BPS), which is an undersampling technique that exploits aliasing to perform downconversion. BPS enables removal of the IF stage in the radio receiver. The sampling frequency is a very important factor since it influences both receiver performance and implementation efficiency. However, the design of BPS can result in degradation of Signal-to-Noise Ratio (SNR) due to the out-of-band noise being aliased. Important to the specification of both the ADC and its clocking Phase- Locked Loop (PLL) is jitter. Contributing to the system jitter are the aperture jitter of the sample-and-hold switch at the input of ADC and the sampling-clock jitter. Aperture jitter effects have usually been modeled as additive noise, based on a sinusoidal input signal, and limits the achievable Signal-to-Noise Ratio (SNR). Jitter in the sampled signal has several sources: phase noise in the Voltage-Controlled Oscillator (VCO) within the sampling PLL, jitter introduced by variations in the period of the frequency divider used in the sampling PLL and cross-talk from the lock line running parallel to signal lines. Jitter in the sampling process directly acts to degrade the noise floor and selectivity of receiver. Choosing an appropriate VCO for a SWR system is not as simple as finding one with right oscillator frequency. Similarly, it is important to specify the right jitter performance for the ADC. In this paper, the allowable sampling frequencies are calculated and analyzed for the multiple frequency BPS software radio GNSS receivers. The SNR degradation due to jitter in a BPSK system is calculated and required jitter standard deviation allowable for each GNSS band of interest is evaluated. Furthermore, in this paper we have investigated the sources of jitter and a basic jitter budget is calculated that could assist in the design of multiple frequency SWR GNSS receivers. We examine different ADCs and PLLs available in the market and compare known performance with the calculated budget. The results obtained are therefore directly applicable to SWR GNSS receiver design.

  • PDF