• Title/Summary/Keyword: GPS Sensor

Search Result 703, Processing Time 0.019 seconds

Orthophoto and DEM Generation Using Low Specification UAV Images from Different Altitudes (고도가 다른 저사양 UAV 영상을 이용한 정사영상 및 DEM 제작)

  • Lee, Ki Rim;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.5
    • /
    • pp.535-544
    • /
    • 2016
  • Even though existing methods for orthophoto production using expensive aircraft are effective in large areas, they are drawbacks when dealing with renew quickly according to geographic features. But, as UAV(Unmanned Aerial Vehicle) technology has advanced rapidly, and also by loading sensors such as GPS and IMU, they are evaluates that these UAV and sensor technology can substitute expensive traditional aerial photogrammetry. Orthophoto production by using UAV has advantages that spatial information of small area can be updated quickly. But in the case of existing researches, images of same altitude are used in orthophoto generation, they are drawbacks about repetition of data and renewal of data. In this study, we targeted about small slope area, and by using low-end UAV, generated orthophoto and DEM(Digital Elevation Model) through different altitudinal images. The RMSE of the check points is σh = 0.023m on a horizontal plane and σv = 0.049m on a vertical plane. This maximum value and mean RMSE are in accordance with the working rule agreement for the aerial photogrammetry of the National Geographic Information Institute(NGII) on a 1/500 scale digital map. This paper suggests that generate orthophoto of high accuracy using a different altitude images. Reducing the repetition of data through images of different altitude and provide the informations about the spatial information quickly.

Development of Traffic Safety Monitoring Technique by Detection and Analysis of Hazardous Driving Events in V2X Environment (V2X 환경에서 위험운전이벤트 검지 및 분석을 통한 교통안전 모니터링기법 개발)

  • Jeong, Eunbi;Oh, Cheol;Kang, Kyeongpyo;Kang, Younsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.1-14
    • /
    • 2012
  • Traffic management centers (TMC) collect real-time traffic data from the field and have powerful databases for analysing, recording, and archiving the data. Recent advanced sensor and communication technologies have been widely applied to intelligent transportation systems (ITS). Regarding sensors, various in-vehicle sensors, in addition to global positioning system (GPS) receiver, are capable of providing high resolution data representing vehicle maneuverings. Regarding communication technologies, advanced wireless communication technologies including vehicle-to-vehicle (V2V) and vehicle-to-vehicle infrastructure (V2I), which are generally referred to as V2X, have been widely used for traffic information and operations (references). The V2X environment considers the transportation system as a network in which each element, such as the vehicles, infrastructure, and drivers, communicates and reacts systematically to acquire information without any time and/or place restrictions. This study is motivated by needs of exploiting aforementioned cutting-edge technologies for developing smarter transportation services. The proposed system has been implemented in the field and discussed in this study. The proposed system is expected to be used effectively to support the development of various traffic information control strategies for the purpose of enhancing traffic safety on highways.

Analysis of Traction Performance for Agricultural Tractor According to Soil Condition (토양 조건에 따른 농업용 트랙터의 견인 성능 분석)

  • Lee, Nam Gyu;Kim, Yong Joo;Baek, Seung Min;Moon, Seok Pyo;Park, Seong Un;Choi, Young Soo;Choi, Chang Hyun
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.133-140
    • /
    • 2020
  • Traction performance of a tractor varies depending on soil conditions. Sinkage and slip of the driving wheel for tractor frequently occur in a reclaimed land. The objective of this study was to develop a tractor suitable for a reclaimed land. Traction performance was evaluated according to soil conditions of reclaimed land and paddy field. Field experiments were conducted at two test sites (Fields A: paddy field; and Field B: reclaimed land). The tractor load measurement system was composed of an axle rotation speed sensor, a torque meter, a six-component load cell, GPS, and a DAQ (Data Acquisition System). Soil properties including soil texture, water content, cone index, and electrical conductivity (EC) were measured. Referring to previous researches, the tractor traveling speed was set to B3 (7.05 km/h), which was frequently used in ridge plow tillage. Soil moisture contents were 33.2% and 48.6% in fields A and B, respectively. Cone index was 2.1 times higher in field A than in field B. When working in the reclaimed land, slip ratios were about 10.5% and 33.1% for fields A and B, respectively. The engine load was used almost 100% of all tractors under the two field conditions. Traction powers were 31.9 kW and 24.2 kW for fields A and B, respectively. Tractive efficiencies were 83.3% and 54.4% for fields A and B, respectively. As soil moisture increased by 16.4%, the tractive efficiency was lowered by about 28.9%. Traction performance of tractor was significantly different according to soil conditions of fields A and B. Therefore, it is necessary to improve the traction performance of tractor for smooth operations in all soil conditions including a reclaimed land by reflecting data of this study.