• Title/Summary/Keyword: GPS Observation

Search Result 258, Processing Time 0.023 seconds

Analysis of Ice Velocity Variations of Nansen Ice Shelf, East Antarctica, from 2000 to 2017 Using Landsat Multispectral Image Matching (Landsat 다중분광 영상정합을 이용한 동남극 난센 빙붕의 2000-2017년 흐름속도 변화 분석)

  • Han, Hyangsun;Lee, Choon-Ki
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1165-1178
    • /
    • 2018
  • Collapse of an Antarctic ice shelf and its flow velocity changes has the potential to reduce the restraining stress to the seaward flow of the Antarctic Ice Sheet, which can cause sea level rising. In this study, variations in ice velocity from 2000 to 2017 for the Nansen Ice Shelf in East Antarctica that experienced a large-scale collapse in April 2016 were analyzed using Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational Land Imager (OLI) images. To extract ice velocity, image matching based on orientation correlation was applied to the image pairs of blue, green, red, near-infrared, panchromatic, and the first principal component image of the Landsat multispectral data, from which the results were combined. The Landsat multispectral image matching produced reliable ice velocities for at least 14% wider area on the Nansen Ice Shelf than for the case of using single band (i.e., panchromatic) image matching. The ice velocities derived from the Landsat multispectral image matching have the error of $2.1m\;a^{-1}$ compared to the in situ Global Positioning System (GPS) observation data. The region adjacent to the Drygalski Ice Tongue showed the fastest increase in ice velocity between 2000 and 2017. The ice velocity along the central flow line of the Nansen Ice Shelf was stable before 2010 (${\sim}228m\;a^{-1}$). In 2011-2012, when a rift began to develop near the ice front, the ice flow was accelerated (${\sim}255m\;a^{-1}$) but the velocity was only about 11% faster than 2010. Since 2014, the massive rift had been fully developed, and the ice velocity of the upper region of the rift slightly decreased (${\sim}225m\;a^{-1}$) and stabilized. This means that the development of the rift and the resulting collapse of the ice front had little effect on the ice velocity of the Nansen Ice Shelf.

Evaluation of Network-RTK Survey Accuracy for Applying to Ground Control Points Survey (지상기준점측량 적용을 위한 Network-RTK 측량 정확도 평가)

  • Kim, Kwang Bae;Lee, Chang Kyung;An, Seong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.127-133
    • /
    • 2014
  • The purpose of this study is to evaluate the accuracy of Network-RTK(VRS) survey for applying to Ground Control Points(GCPs) survey required for mapping aerial photographs. Network-RTK has been serviced by National Geographic Information Institute since 2007. On the basis of the global coordinates system(ITRF2000), the coordinates of GCPs determined by Static GNSS survey with relative positioning techniques were regarded as accurate values. The coordinates of GCPs were also determined by Network-RTK survey using two kinds of receivers, and then they were converted into the global coordinates system(ITRF2000) by applying suitable geoid model and coordinate transformation. These coordinates of GCPs were compared with those from Static GNSS survey. The root mean squares error (RMSE) of coordinate differences between Network-RTK and Static GNSS was ${\pm}2.0cm$ in plane and ${\pm}7.0cm$ in height. Therefore, Network-RTK survey that enables single GNSS receiver to measure positions in short time is a practical alternative in positioning GCPs to either RTK survey that uses more than two sets of GNSS receivers or Static GNSS survey that requires longer observation time.

Scientific Missions and Technologies of the ISSS on board the NEXTSat-1

  • Choi, Cheong Rim;Sohn, Jongdae;Lee, Jun-Chan;Seo, Yong Myung;Kang, Suk-Bin;Ham, Jongwook;Min, Kyoung-Wook;Seon, Jongho;Yi, Yu;Chae, Jang-Soo;Shin, Goo-Hwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.73-81
    • /
    • 2014
  • A package of space science instruments, dubbed the Instruments for the Study of Space Storms (ISSS), is proposed for the Next Generation Small Satellite-1 (NEXTSat-1), which is scheduled for launch in May 2016. This paper describes the instrument designs and science missions of the ISSS. The ISSS configuration in NEXTSat-1 is as follows: the space radiation monitoring instruments consist of medium energy particle detector (MEPD) and high energy particle detector (HEPD); the space plasma instruments consist of a Langmuir probe (LP), a retarding potential analyzer (RPA), and an ion drift meter (IDM). The space radiation monitoring instruments (MEPD and HEPD) measure electrons and protons in parallel and perpendicular directions to the geomagnetic field in the sub-auroral region, and they have a minimum time resolution of 50 msec for locating the region of the particle interactions with whistler mode waves and electromagnetic ion cyclotron (EMIC) waves. The MEPD measures electrons and protons with energies of tens of keV to ~400 keV, and the HEPD measures electrons with energies of ~100 keV to > ~1 MeV and protons with energies of ~10 MeV. The space plasma instruments (LP, RPA, and IDM) observe irregularities in the low altitude ionosphere, and the results will be compared with the scintillations of the GPS signals. In particular, the LP is designed to have a sampling rate of 50 Hz in order to detect these small-scale irregularities.

A Study on DEM Generation from Kompsat-3 Stereo Images (아리랑 3호 스테레오 위성영상의 DEM 제작 성능 분석)

  • Oh, Jae Hong;Seo, Doo Chun;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • Kompsat-3 is an optical high-resolution earth observation satellite launched in May 2012. In addition to its 0.7m spatial resolution, Kompsat-3 is capable of in-track stereo acquisition enabling quality Digital Elevation Model(DEM) generation. Typical DEM generation procedure requires accurate control points well-distributed over the entire image region. But we often face difficult situations especially when the area of interests is oversea or inaccessible area. One solution to this is to use existing geospatial data even though they only cover a part of the image. This paper aimed to assess accuracy of DEM from Kompsat-3 with different scenarios including no control point, Rational Polynomial Coefficients(RPC) relative adjustment, and RPC adjustment with control points. Experiments were carried out for Kompsat-3 stereo data in USA. We used Digital Orthophoto Quadrangle(DOQ) and Shuttle Radar Topography Mission(SRTM) as control points sources. The generated DEMs are compared to a LiDAR DEM for accuracy assessment. The test results showed that the relative RPC adjustment significantly improved DEM accuracy without any control point. And comparable DEM could be derived from single control point from DOQ and SRTM, showing 7 meters of mean elevation error.

How sun spot activity affects on positioning accuracy?: Case study of solar storm (태양 흑점활동이 측위오차에 미치는 영향: 태양폭풍 사례연구)

  • Yoo, Yun-Ja;Cho, Deuk-Jae;Park, Sang-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.27-28
    • /
    • 2011
  • A solar flares have the 11-year cycle and release a large energy which may produce coronal mass ejections (CME). The NOAA (National Oceanic and Atmospheric Administration) predicted that the sun spot activity will be maximized in 2013-2014. A strong solar flare can cause the disturbance of global positioning system including various communication of TV, radio broadcasting. The actual solar storm in 1989 caused power outages in Canada during 9 hours and about 600 million people had experienced a blackout. Such a solar storm can shorten the GPS satellite's life span about 5 to 10 years which can be resulted in economic loss considering the amount of multi-billion won. This paper analyzed the recent solar storm of X-class occurred on 15th of February about 10:45 this year that was reached Korea (Bohyun observatory) on 18th of February about 10:30 (local time), and compared with the data of before and after a week. The proton data of 18th of February considered that the solar strom reached on earth showed a fluctuation compared to the data of before and after a week. The positioning results at Daejeon also showed higher positioning error compared to the data of before and after a week results.

  • PDF

Interactive Navigational Structures

  • Czaplewski, Krzysztof;Wisniewski, Zbigniew
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.495-500
    • /
    • 2006
  • Satellite systems for objects positioning appeared indispensable for performing basic tasks of maritime navigation. Navigation, understood as safe and effective conducting a vehicle from one point to another, within a specific physical-geographical environment. [Kopacz, $Urba{\acute{n}}ski$, 1998]. However, the systems have not solved the problem of accessibility to reliable and highly accurate information about a position of an object, especially if surveyed toward on-shore navigational signs or in sea depth. And it's of considerable significance for many navigational tasks, carried out within the frameworks of special works performance and submarine navigation. In addition, positioning precisely the objects other than vessels, while executing hydrographical works, is not always possible with a use of any satellite system. Difficulties with GPS application show up also while positioning such off-lying dangers as wrecks, underwater and aquatic rocks also other naturaland artificial obstacles. It is caused by impossibility of surveyors approaching directly any such object while its positioning. Moreover, determination of vessels positions mutually (mutual geometrical relations) by teams carrying out one common tasks at sea, demands applying the navigational techniques other than the satellite ones. Vessels'staying precisely on specified positions is of special importance in, among the others, the cases as follows: - surveying vessels while carrying out bathymetric works, wire dragging; - special tasks watercraft in course of carrying out scientific research, sea bottom exploration etc. The problems are essential for maritime economy and the Country defence readiness. Resolving them requires applying not only the satellite navigation methods, but also the terrestrial ones. The condition for implementation of the geo-navigation methods is at present the methods development both: in aspects of their techniques and technologies as well as survey data evaluation. Now, the classical geo-navigation comprises procedures, which meet out-of-date accuracy standards. To enable meeting the present-day requirements, the methods should refer to well-recognised and still developed methods of contemporary geodesy. Moreover, in a time of computerization and automation of calculating, it is feasible to create also such software, which could be applied in the integrated navigational systems, allowing carrying out navigation, provided with combinatory systems as well as with the new positioning methods. Whereas, as regards data evaluation, there should be applied the most advanced achievements in that subject; first of all the newest, although theoretically well-recognised estimation methods, including estimation [Hampel et al. 1986; $Wi{\acute{s}}niewski$ 2005; Yang 1997; Yang et al. 1999]. Such approach to the problem consisting in positioning a vehicle in motion and solid objects under observation enables an opportunity of creating dynamic and interactive navigational structures. The main subject of the theoretical suggested in this paper is the Interactive Navigational Structure. In this paper, the Structure will stand for the existing navigational signs systems, any observed solid objects and also vehicles, carrying out navigation (submarines inclusive), which, owing to mutual dependencies, (geometrical and physical) allow to determine coordinates of this new Structure's elements and to correct the already known coordinates of other elements.

  • PDF

Detecting Surface Changes Triggered by Recent Volcanic Activities at Kīlauea, Hawai'i, by using the SAR Interferometric Technique: Preliminary Report (SAR 간섭기법을 활용한 하와이 킬라우에아 화산의 2018 분화 활동 관측)

  • Jo, MinJeong;Osmanoglu, Batuhan;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1545-1553
    • /
    • 2018
  • Recent eruptive activity at Kīlauea Volcano started on at the end of April in 2018 showed rapid ground deflation between May and June in 2018. On summit area Halema'uma'u lava lake continued to drop at high speed and Kīlauea's summit continued to deflate. GPS receivers and electronic tiltmeters detected the surface deformation greater than 2 meters. We explored the time-series surface deformation at Kīlauea Volcano, focusing on the early stage of eruptive activity, using multi-temporal COSMO-SkyMed SAR imagery. The observed maximum deformation in line-of-sight (LOS) direction was about -1.5 meter, and it indicates approximately -1.9 meter in subsiding direction by applying incidence angle. The results showed that summit began to deflate just after the event started and most of deformation occurred between early May and the end of June. Moreover, we confirmed that summit's deflation rarely happened since July 2018, which means volcanic activity entered a stable stage. The best-fit magma source model based on time-series surface deformation demonstrated that magma chambers were lying at depths between 2-3 km, and it showed a deepening trend in time. Along with the change of source depth, the center of each magma model moved toward the southwest according to the time. These results have a potential risk of including bias coming from single track observation. Therefore, to complement the initial results, we need to generate precise magma source model based on three-dimensional measurements in further research.

Characteristics of Beach Change and Sediment Transport by Field Survey in Sinji-Myeongsasimni Beach (신지명사십리 해수욕장에서 현장조사에 의한 해빈변화와 퇴적물이동 특성)

  • Jeong, Seung Myong;Park, Il Heum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.594-604
    • /
    • 2021
  • To evaluate the causes of beach erosion in Sinji-Myeongsasimni Beach, external forces, such as tides, tidal currents, and waves, were observed seasonally from March 2019 to March 2020, and the surface sediments were analyzed for this period. In addition, the shoreline positions and beach elevations were regularly surveyed with a VRS GPS and fixed-wing drone. From these field data, the speed of the tidal currents was noted to be insufficient, but the waves were observed to af ect the deformation of the beach. As the beach is open to the southern direction, waves of heights over 1 m were received in the S-SE direction during the spring, summer, and fall seasons. Large waves with heights over 2 m were observed during typhoons in summer and fall. Because of the absence of typhoons for the previous two years from July 2018, the beach area over datum level (DL) as of July 2018 was greater by 30,138m2 compared with that of March 2019, and the beach area as of March 2020 decreased by 61,210m2 compared with that of March 2019 because of four typhoon attacks after July 2018. The beach volume as of March 2019 decreased by 5.4% compared with that of July 2018 owing to two typhoons, and the beach volume as of September 2019 decreased by 7.3% because of two typhoons during the observation year. However, the volume recovered slightly by about 3% during fall and winter, when there were no high waves. According to the sediment transport vectors by GSTA, the sediments were weakly influxed from small streams located at the center of the beach; the movement vectors were not noticeable at the west beach site, but the westward sediment transport under the water and seaward vectors from the foreshore beach were prominently observed at the east beach site. These patterns of westward sediment vectors could be explained by the angle between the annual mean incident wave direction and beach opening direction. This angle was inclined 24° counterclockwise with the west-east direction. Therefore, the westward wave-induced currents developed strongly during the large-wave seasons. Hence, the sand content is high in the west-side beach but the east-side beach has been eroded seriously, where the pebbles are exposed and sand dune has decreased because of the lack of sand sources except for the soiled dunes. Therefore, it is proposed that efforts for creating new sediment sources, such as beach nourishment and reducing wave heights via submerged breakwaters, be undertaken for the eastside of the beach.