• Title/Summary/Keyword: GPS Observation

Search Result 258, Processing Time 0.029 seconds

Realization of New Korean Horizontal Geodetic Datum: GPS Observation and Network Adjustment

  • Lee, Young-Jin;Lee, Hung-Kyu;Jung, Gwang-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.529-534
    • /
    • 2006
  • New geocentric geodetic datum has recently been realized in Korea, Korean Geodetic Datum 2002- KGD2002, to overcome problems due to the existing Tokyo datum, which had been used in this country since early 20th century. This transition will support modern surveying techniques, such as Global Navigation Satellite Systems (GNSS) and ensures that spatial data is compatible with other international systems. For this realization, very long baseline interferometry (VLBI) observations were initially carried out in 1995 to determine the coordinates of the origin of KGD2002 based on the International Terrestrial Reference Frame (ITRF). Continuous GPS observations were collected from 14 reference stations across Korea to compute the coordinates of 1st order horizontal geodetic control points. During the campaign, GPS observations were also collected at about 9,000 existing geodetic control points. In 2006, network adjustment with all data obtained using GPS and EDM since 1975 has been performed under the condition of fixing the coordinates of GPS continuous observation stations to compute coordinate measurements of the 2nd and 3rd geodetic control points. This paper describes the GPS campaigns which have been undertaken since 1996 and details of the network adjustment schemes. This is followed

  • PDF

Accuracy Analysis on Geodetic Network in Jeju area using GPS (GPS에 의한 제주지역의 측지기준망 정확도 분석)

  • Kang, Sang-Gu;Jung, Young-Dong;Yang, Young-Bo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.1 s.35
    • /
    • pp.65-74
    • /
    • 2006
  • A rapidly developed satellite technology is used in comprehensive fields such as spatial data aquisition and applications. Especially a GPS positioning is expected to reinvigorate at the national reference system changes to ITRF(International Terrain Reference Frame). Currently the National Geographic Information Institute(NGII) issues a triangulation point coordinate by separating old and new coordinates and in the year of 2007 it will be scheduled to be changed ITRF. The triangulation point coordinate in Cheju area causes some problems due to the difference original observation and re-observation. Thus in this study a GPS observation is conducted after re-organizing geodetic network based on 1st and 2nd order triangulation in order to check the current triangulation points in Cheju area. After the GPS observation data analysis, stable points were extracted, proposed a geodetic network and its application.

  • PDF

Development of Long Period Wave Observation System based on GPS (GPS 신호를 이용한 장주기 파고 관측 시스템 개발)

  • Kim, Tae-Hee;Gang, Yong-Soo;Lee, Won-Boo;Kim, Dae-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.682-689
    • /
    • 2011
  • Recently, there are frequent disasters by Swell-like Wave in the coastal area, Korea peninsula. This phenomenon (Swell-like Wave) has long period above 10 seconds compared with wind wave. To prevent these disasters by the long-period wave in advance, it's necessary to observe it in real time. But existing instruments for wave observation can not observe long-period wave because they mainly are aimed to measure the short-period wind wave. Therefore, in this research it is tried to develop the GPS based Long Period Wave Observation System which real time operation can be realzied in the sea.

Retrieval and Validation of Precipitable Water Vapor using GPS Datasets of Mobile Observation Vehicle on the Eastern Coast of Korea

  • Kim, Yoo-Jun;Kim, Seon-Jeong;Kim, Geon-Tae;Choi, Byoung-Choel;Shim, Jae-Kwan;Kim, Byung-Gon
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.4
    • /
    • pp.365-382
    • /
    • 2016
  • The results from the Global Positioning System (GPS) measurements of the Mobile Observation Vehicle (MOVE) on the eastern coast of Korea have been compared with REFerence (REF) values from the fixed GPS sites to assess the performance of Precipitable Water Vapor (PWV) retrievals in a kinematic environment. MOVE-PWV retrievals had comparatively similar trends and fairly good agreements with REF-PWV with a Root-Mean-Square Error (RMSE) of 7.4 mm and $R^2$ of 0.61, indicating statistical significance with a p-value of 0.01. PWV retrievals from the June cases showed better agreement than those of the other month cases, with a mean bias of 2.1 mm and RMSE of 3.8 mm. We further investigated the relationships of the determinant factors of GPS signals with the PWV retrievals for detailed error analysis. As a result, both MultiPath (MP) errors of L1 and L2 pseudo-range had the best indices for the June cases, 0.75-0.99 m. We also found that both Position Dilution Of Precision (PDOP) and Signal to Noise Ratio (SNR) values in the June cases were better than those in other cases. That is, the analytical results of the key factors such as MP errors, PDOP, and SNR that can affect GPS signals should be considered for obtaining more stable performance. The data of MOVE can be used to provide water vapor information with high spatial and temporal resolutions in the case of dramatic changes of severe weather such as those frequently occurring in the Korean Peninsula.

Radiosonde Sensors Bias in Precipitable Water Vapor From Comparisons With Global Positioning System Measurements

  • Park, Chang-Geun;Roh, Kyoung-Min;Cho, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.3
    • /
    • pp.295-303
    • /
    • 2012
  • In this study, we compared the precipitable water vapor (PWV) data derived from the radiosonde observation data at Sokcho Observatory and the PWV data at Sokcho Global Positioning System (GPS) Observatory provided by Korea Astronomy and Space Science Institute, for the years of 2006, 2008, 2010, and analyzed the radiosonde seasonal, diurnal bias according to radiosonde sensor types. In the scatter diagram of the daytime and nighttime radiosonde PWV data and the GPS PWV data, dry bias was found in the daytime radiosonde observation as known in the previous study. Overall, the tendency that the wet bias of the radiosonde PWV increased as the GPS PWV decreased and the dry bias of the radiosonde PWV increased as the GPS PWV increased. The quantitative analysis of the bias and error of the radiosonde PWV data showed that the mean bias decreased in the nighttime except for 2006 winter, and in comparison for summer, RS92-SGP sensor showed the highest quality.

Development of a LoRaWAN-based Real-time Ocean-current Draft Observation System using a multi-GPS Triangulation Method Correction Algorithm (다중 GPS 삼각측량보정법을 이용한 LoRaWAN기반 실시간 해류관측시스템 개발)

  • Kang, Young-Gwan;Lee, Woo-Jin;Yim, Jae-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.64-68
    • /
    • 2022
  • Herein, we propose a LoRaWAN-based small draft system that can measure the ocean current flow (speed, direction, and distance) in real time at the request of the Coast Guard to develop a device that can promptly find survivors at sea. This system has been implemented and verified in the early stages of rescue after maritime vessel accidents, which are frequent. GPS signals often transmit considerable errors, so correction algorithms using the improved triangulation method algorithm are required to accurately indicate the direction of currents in real time. This paper is structured in the following manner. The introduction section elucidates rescue activities in the case of a maritime accident. Chapter 2 explains the characteristics and main parameters of the GPS surveying technique and LoRaWAN communication, which are related studies. It explains and expands on the critical distance error correction algorithm for GPS signals and its improvement. Chapter 3 discusses the design and analysis of small draft buoys. Chapter 4 presents the testing and validation of the implemented system in both onshore and offshore environments. Finally, Section 5 concludes the study with the expected impact and effects in the future.

A Study on the Application of GPS for Computation of the Vertical Deflection and Astro-coordinates (연직선편차와 천문좌표 산정을 위한 GPS의 적용연구)

  • Lee, Yong-Chang;Lee, Yong-Wook
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.5 no.1 s.9
    • /
    • pp.57-70
    • /
    • 1997
  • Conventional procedures to determine vertical deflections and astronomical coordinates require the stellar observations which be under restraints of clear night-time weather conditions, surrounding environment, long observation time and the use of instruments, etc. Therefore the more effective observation method subjugatting these problems has requested. The objective of this study is to propose method to compute vertical deflections, astronomical coordinates(latitude and longitude), and astronomical azimuth by mixing GPS observation results and orthometric heights. For this study, programmed the program which able to obtain the change in geoid undulation by using the GPS- determined geodetic height difference and the orthometric height difference, and GPS satellite surveying was performed at both ten points of astronomical points and four triangulation points around each astronomical station in South Korea. The Astronomical results determined from GPS observations compared to those determined from both conventional astronomical measurements and the recent earth gravitational Model(EGM96).

  • PDF

An Analysis of the Least Observing-Session Duration of GPS for the Retrieval of Precipitable Water Vapor (GPS 가강수량 산출을 위한 최소 관측세션 지속시간에 대한 분석)

  • Kim, Yoo-Jun;Han, Sang-Ok;Kim, Ki-Hoon;Kim, Seon-Jeong;Kim, Geon-Tae;Kim, Byung-Gon
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.391-402
    • /
    • 2014
  • This study investigated the performances of precipitable water vapor (PWV) retrieval from the sets of ground global positioning system (GPS) signals, each of which had different length of observing-session duration, for the purpose of obtaining as short session duration as possible that is required at the least for appropriate retrieval of the PWV for meteorological usage. The shorter duration is highly desirable to make the most use of the GPS instrument on board the mobile observation vehicle making measurements place by place. First, using Bernese 5.0 software the PWV retrieval was conducted with the data sets of GPS signals archived continuously in 30 seconds interval during 2-month period of January and February, 2012 at Bukgangneung site. Each of the PWVs produced independently using different session durations was compared to that of radio-sonde launched at the same GPS location, a Bukgangneung site. Second, the same procedure was done using the data sets obtained from the mobile observation vehicle that was operating at Boseong area in Jeonnam province during Changma observation campaign in 2013, and the results were compared to that at Bukgangneung site. The results showed that as the observing-session duration increased the retrieval errors decreased with the dramatic change happening between 3 and 4 hours of the duration. On average, the root mean square error (RMSE) of the retrieved PWV was around 1 mm for the durations of greater than 4 hours. The results at both the Bukgangneung (fixed site) and Boseong (mobile vehicle) seemed to be fairly comparable with each other. From this study it is believed that at least 4 hours of observing-session duration is needed for the retrieval of PWV from the ground GPS for meteorological usage using Bernese 5.0 software.

Performance Analysis of the KOMPSAT-1 Orbit Determination Using GPS Navigation Solutions (GPS 항행해를 이용한 아리랑 1호의 궤도결정 성능분석 연구)

  • Kim, Hae-Dong;Choi, Hae-Jin;Kim, Eun-Kyou
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.43-52
    • /
    • 2004
  • In this paper, the performance of the KOMPSAT-1 orbit determination (OD) accuracy at the ground station was analyzed by using the flight data. The Bayesian least squares estimation was used for the orbit determination and the assessment of the orbit accuracy was evaluated based on orbit overlap comparisons. We also compared the result from OD using GPS navigation solutions with NORAD TLE and the result from OD using range data. Furthermore, the effect of observation type and OBT drift on the accuracy was investigated. As a consequence, It is shown that the OD accuracy using only GPS position data is on the order of 5m RMS (Root Mean Square) with 4 hrs arc overlap for the 30hr arc and the GPS velocity data is not proper as a observation for the OD due to its inferior quality. The significant deterioration of the accuracy due to the critical clock bias was not founded by means of the comparison of OD result from other observations.

The Verification of Precision of Single RTK-GPS using CORS (CORS를 이용한 Single RTK-GPS 정확도 검증)

  • Park, Un-Yong;Lee, Dong-Rak;Lee, In-Su;Bae, Kyoung-Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.2 s.29
    • /
    • pp.29-35
    • /
    • 2004
  • The plenty of availability and high precision of GPS CORS is the reason why it become important more and more in the fields of surveying widely. In this study, I extracted the arbitrary point's coordinate which is using GPS CORS data, now served in RINEX FORMAT via Inter-Net, with observation network of the existing triangulation and GPS CORS data. Then, with this arbitrary point as reference station RTK GPS was performed. And I will study VRS-GPS concept which reduces the time and cost in the fields of surveying.

  • PDF