Browse > Article
http://dx.doi.org/10.5140/JASS.2012.29.3.295

Radiosonde Sensors Bias in Precipitable Water Vapor From Comparisons With Global Positioning System Measurements  

Park, Chang-Geun (Korea Astronomy and Space Science Institute)
Roh, Kyoung-Min (Korea Astronomy and Space Science Institute)
Cho, Jung-Ho (Korea Astronomy and Space Science Institute)
Publication Information
Journal of Astronomy and Space Sciences / v.29, no.3, 2012 , pp. 295-303 More about this Journal
Abstract
In this study, we compared the precipitable water vapor (PWV) data derived from the radiosonde observation data at Sokcho Observatory and the PWV data at Sokcho Global Positioning System (GPS) Observatory provided by Korea Astronomy and Space Science Institute, for the years of 2006, 2008, 2010, and analyzed the radiosonde seasonal, diurnal bias according to radiosonde sensor types. In the scatter diagram of the daytime and nighttime radiosonde PWV data and the GPS PWV data, dry bias was found in the daytime radiosonde observation as known in the previous study. Overall, the tendency that the wet bias of the radiosonde PWV increased as the GPS PWV decreased and the dry bias of the radiosonde PWV increased as the GPS PWV increased. The quantitative analysis of the bias and error of the radiosonde PWV data showed that the mean bias decreased in the nighttime except for 2006 winter, and in comparison for summer, RS92-SGP sensor showed the highest quality.
Keywords
bias; global positioning system; precipitable water vapor; radiosonde;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ninomiya K, Dynamic meteorology essence (Sigma Press, Seoul, 2003), 77.
2 Rocken C, van Hove T, Johnson J, Solheim F, Ware RH, et al., GPS/STORM-GPS sensing of atmospheric water vapor for meteorology, JAtOT, 12, 468-478 (1995). http://dx.doi.org/10.1175/1520-0426(1995)012%3C0468:GSOAWV%3E2.0.CO;2
3 Song DS, Yun HS, Cho JM, Estimation of tropospheric water vapor using GPS observation, Korean J Geomat, 20, 215-222 (2002).
4 Turner DD, Lesht BM, Clough JC, Liljegren JC, Revercomb HE, et al., Dry bias and variability in Vaisala RS80-H radiosondes: the ARM experience, JAtOT, 20, 117-132 (2003). http://dx.doi.org/10.1175/1520-0426(2003)020%3C0117:DBAVIV%3E2.0.CO;2
5 Wang J, Cole HL, Carlson DJ, Miller ER, Beierle K, Corrections of humidity measurement errors from the Vaisala RS80 radiosonde applications to TOGA COARE data, JAtOT, 19, 981-1002 (2002). http://dx.doi.org/10.1175/1520-0426(2002)019%3C0981:COHMEF%3E2.0.CO;2
6 Wang J, Zhang L, Systematic errors in global radiosonde precipitable water data from comparisons with ground-based GPS measurements, JCli, 21, 2218-2238 (2008). http://dx.doi.org/10.1175/2007JCLI1944.1   DOI
7 Kwon H-T, Iwabuchi T, Lim G-H, Comparison of precipitable water derived from ground-based GPS measurements with radiosonde observations over the Korean peninsula, J Meteor Soc Jpn, 85, 733-746 (2007). http://dx.doi.org/10.2151/jmsj.85.733   DOI
8 Liou Y-A, Huang C-Y, Teng Y-T, Precipitable water observed by ground-based GPS receivers and microwave radiometry, EP&S, 52, 445-450 (2000).
9 Lorenc AC, Barker D, Bell RS, Macpherson B, Maycock AJ, On the use of radiosonde humidity observations in mid-latitude NWP, MAP, 60, 3-17 (1996). http://dx.doi.org/10.1007/BF01029782
10 Liou Y-A, Teng Y-T, van Hove T, Liljegren JC, Comparison of precipitable water observations in the near tropics by GPS, microwave radiometer, and radiosondes, JApMe, 40, 5-15 (2001). http://dx.doi.org/10.1175/1520-0450(2001)040%3C0005:COPWOI%3E2.0.CO;2
11 Miloshevich LM, Paukkunen A, Vömel H, Oltmans SJ, Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements, JAtOT, 21, 1305-1327 (2004). http://dx.doi.org/10.1175/1520-0426(2004)021%3C1305:DAVOAT%3E2.0.CO;2
12 Miloshevich LM, Vömel H, Whiteman DN, Lesht BM, Schmidlin FJ, et al., Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation, JGR, 111, D09S10 (2006). http://dx.doi.org/10.1029/2005JD006083   DOI
13 Motell C, Porter J, Foster J, Bevis M, Businger S, Comparison of precipitable water over Hawaii using AVHRR-based split-window techniques, GPS and radiosondes, IJRS, 23, 2335-2339 (2002). http://dx.doi.org/10.1080/01431160110069944
14 Nakamura H, Seko H, Shoji Y, Dry biases of humidity measurements from the Vaisala RS80-A and Meisei RS2-91 radiosondes and from ground-based GPS, J Meteor Soc Jpn, 82, 277-299 (2004). http://dx.doi.org/10.2151/jmsj.2004.277   DOI
15 Niell AE, Global mapping functions for the atmospheric delay at radio wavelengths, JGR, 101, 3227-3246 (1996). http://dx.doi.org/10.1029/95JB03048   DOI
16 Bevis M, Chiswell S, Businger S, Herring TA, Bock Y, Estimating wet delays using numerical weather analyses and predictions, RaSc, 31, 477-488 (1996). http://dx.doi.org/10.1029/96RS00008
17 Businger S, Chiswell SR, Bevis M, Duan J, Anthes RA, et al., The promise of GPS in atmospheric monitoring, BAMS, 77, 5-18 (1996). http://dx.doi.org/10.1175/1520-0477(1996)077%3C0005:TPOGIA%3E2.0.CO;2   DOI
18 Duan J, Bevis M, Fang P, Bock Y, Chiswell S, et al., GPS meteorology: direct estimation of the absolute value of precipitable water, JApMe, 35, 830-838 (1996). http://dx.doi.org/10.1175/1520-0450(1996)035%3C0830:GMDEOT%3E2.0.CO;2
19 Dach R, Hugentobler U, Fridez P, Meindl M, Bernese GPS software version 5.0 (Printing Office of the University of Bern, Switzerland, 2007), 1-612.
20 Davis JL, Herring TA, Shapiro II, Rogers AE, Elgered G, Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length, RaSc, 20, 1593-1607 (1985). http://dx.doi.org/10.1029/RS020i006p01593
21 Durre I, Williams CN, Yin X, Vose RS, Radiosonde-based trends in precipitable water over the northern hemisphere: an update, JGR, 114, D05112 (2009). http://dx.doi.org/10.1029/2008JD010989   DOI
22 Elliott WP, Gaffen DJ, On the utility of radiosonde humidity archives for climate studies, BAMS, 72, 1507-1520 (1991). http://dx.doi.org/10.1175/1520-0477(1991)072%3C1507:OTUORH%3E2.0.CO;2   DOI
23 Ferrare RA, Melfi SH, Whiteman DN, Evans KD, Schmidlin FJ, et al., A comparison of water vapor measurements made by Raman lidar and radiosondes, JAtOT, 12, 1177-1195 (1995). http://dx.doi.org/10.1175/1520-0426(1995)012%3C1177:ACOWVM%3E2.0.CO;2
24 Hudson SR, Town MS, Walden VP, Warren SG, Temperature, humidity, and pressure response of radiosonde at low temperature, JAtOT, 21, 825-836 (2004). http://dx.doi.org/10.1175/1520-0426(2004)021%3C0825:THAPRO%3E2.0.CO;2
25 Kim K-H, Kim Y-H, Chang D-E, The analysis of changma structure using radiosonde observational data from KEOP-2007. Part I. The assessment of the radiosonde data, Atmosphere, 19, 213-226 (2009).
26 Bevis M, Businger S, Herring TA, Rocken C, Anthes RA, et al., GPS meteorology: remote sensing of atmospheric water vapor using global positioning system, JGR, 97, 15787-15801 (1992). http://dx.doi.org/10.1029/92JD01517   DOI