• Title/Summary/Keyword: GPS L5

Search Result 105, Processing Time 0.019 seconds

Improvement of GPS positioning accuracy by static post-processing method (정적 후처리방식에 의한 GPS의 측위정도 개선)

  • 김민선;신현옥
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.251-261
    • /
    • 2003
  • To measure the GPS position accuracy and its distribution according to the length of the baseline, 30 minutes to 24 hours observations at the fixed location were conducted with two GPS receivers (Ll, 12 channels) on May 29 to June 2, 2002. The GPS data received at the reference station, the rover station and the ordinary times GPS observation station operated by the National Geography Institute in Korea were processed in kinematic and static post-processing methods with a post -processing software. The results obtained are summarized as follows: 1. The number of the satellite that could be observed continuously more than six hours was 16 and most of these satellites were positioned at east-west direction on May 31, 2002. The number of the satellite observed and the geometric dilution of precision (GDOP) determined by the average of every 10 minute for the day were 8 and 3.89, respectively. 2. Both the average GPS positions before and after post-processing were shifted (standalone: 1.17 m, post -processing: 0.43m) to the south and west. The twice distance root mean square (2drms) measured with standalone was 6.65m. The 2drms could be reduced to 33.8% (standard deviation 0=17.2) and 5.3% (0=2.2) of standalone by the kinematic and the static post-processing methods, respectively. 3. The relationship between the length of the baseline x (km) and the 2drms y (m) obtained by the static post-processing method was y=0.00l6x+0.006 $(R^2=0.87)$. In the case of the positioning with the static post-processing method using the GPS receiver, it was found that a positioning within 20cm 2drms was possible when the length of the baseline was less than 100km and the receiving time of the GPS is more than 30 minutes.

Ambiguity Determination Technique for Multiple GPS Reference Stations using the Combination of L1/L2 Carrier Phase (L1/L2 측정치 조합을 이용한 GPS 기준국간 반송파 미지정수 결정 기법)

  • Park, Byung-Woon;Song, June-Sol;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.5
    • /
    • pp.705-713
    • /
    • 2011
  • In this paper, we introduce two techniques for resolving integer ambiguities between reference stations, which is one of the most important processes in Network RTK correction generation process. Each techniques uses Hatch filter and combination of L1/L2 measurements and we used simulation data and real data to evaluate performance of the techniques. For evaluating performance of each technique, we compared corrections generated from user site and Network RTK. As a result, Network RTK with the technique which uses Hatch filter improves user performance much more than single baseline RTK does. Residual of user is smaller than a half size of wavelength so it does not affect user integer ambiguity resolution, however, it contains significant bias error. On the other hand, when we used the technique which uses combination of L1/L2 measurements, residual error of user is largely reduced compared to the technique using Hatch filter.

Design of RF Front-end for High Precision GNSS Receiver (고정밀 위성항법 수신기용 RF 수신단 설계)

  • Chang, Dong-Pil;Yom, In-Bok;Lee, Sang-Uk
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.64-68
    • /
    • 2007
  • This paper describes the development of RF front.end equipment of a wide band high precision satellite navigation receiver to be able to receive the currently available GPS navigation signal and the GALILEO navigation signal to be developed in Europe in the near future. The wide band satellite navigation receiver with high precision performance is composed of L - band antenna, RF/IF converters for multi - band navigation signals, and high performance baseband processor. The L - band satellite navigation antenna is able to be received the signals in the range from 1.1 GHz to 1.6 GHz and from the navigation satellite positioned near the horizon. The navigation signal of GALILEO navigation satellite consists of L1, E5, and E6 band with signal bandwidth more than 20 MHz which is wider than GPS signal. Due to the wide band navigation signal, the IF frequency and signal processing speed should be increased. The RF/IF converter has been designed with the single stage downconversion structure, and the IF frequency of 140 MHz has been derived from considering the maximum signal bandwidth and the sampling frequency of 112 MHz to be used in ADC circuit. The final output of RF/IF converter is a digital IF signal which is generated from signal processing of the AD converter from the IF signal. The developed RF front - end has the C/N0 performance over 40dB - Hz for the - 130dBm input signal power and includes the automatic gain control circuits to provide the dynamic range over 40dB.

  • PDF

Design of a Internal Loop Antenna for Multi-band Mobile Handset Applications (다중 대역 이동 통신 단말기용 내장형 루프 안테나 설계)

  • Lee Young-Joong;Lee Jin-Sung;Jung Byungwoon;Park Myun-Joo;Lee Byungje
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.9 s.100
    • /
    • pp.917-925
    • /
    • 2005
  • In this paper, the quad-band antenna for mobile handsets is proposed and developed. The operating frequency bands include GSM(880 MHz${\~}$960 MHz), GPS(1,575 MHz$\pm$10 MHz), DCS(1,710 MHz${\~}$l,880MHz), and PCS(1,850 MHz${\~}$l,990 MHz). The proposed antenna consists of a feed line, a shorting post, and a radiating element of the feed loop. The multi-band operation is achieved by using the fundamental and higher resonant modes of the radiating element. Based on analysis of the current distribution on the radiator, the resonant frequency of each mode can be adjusted by adding the different sizes of slots on the radiator. The radiator of the feed loop is designed to be symmetrical so that the energy is symmetrically distributed on the radiator, which results in omni-directional radiation pattern. The ground plane under the radiator is removed in order to improve the bandwidth. The measured impedance bandwidths are $10.1\%$ in GSM band(VSWR<2.5), $26.8\%$ in GPS band, and DCS/US-PCS bands(VSWR<2.5), respectively. The maximum gains on the H-plane of the fabricated antenna are measured about -0.37 dBi${\~}$2.55 dBi for all operating frequency bands.

GPS Ionospheric Perturbations Following ML ≥ 5.0 Earthquakes in Korean Peninsula (한반도내 규모 5.0 이상의 지진에 의한 GPS 전리층 변동)

  • Sohn, Dong-Hyo;Park, Sun-Cheon;Lee, Won-Jin;Lee, Duk Kee
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1531-1544
    • /
    • 2018
  • We detected the coseismic ionospheric disturbance generated by the earthquakes of magnitude 5.0 and greater in Korean Peninsula. We considered the seismic events such as Gyeongju earthquake in September 2016 with magnitude 5.8, the Pohang earthquake in November 2017 with magnitude 5.4, and the underground nuclear explosion from North Korea in September 2017 with magnitude 5.7. Although all GPS stations were not detected, the ionospheric disturbance induced by these earthquakes occurred approximately 10-30 minutes and 40-60 minutes after the events. We inferred that the time difference within each variation is due to the different focal depth and the geometry of epicenter, satellite, and GPS station. In the case of the Gyeongju earthquake, the earthquake had relatively deeper depth than the other earthquakes. However, the seismic magnitude was bigger and it occurred at nighttime when the ionospheric activity was stable. So we could observe such anomalous variations. It is considered that the ionospheric disturbance caused by the difference in velocity of the upward propagating waves generated by earthquake appears more than once. Our results indicate that the detection of ionospheric disturbances varies depending on the geometry of the GPS station, satellite, and epicenter or the detection method and that the apparent growth of amplitude in the time series varies depending on the focal depth or the site-satellite-epicenter geometry.

Development of Coordinate Transformation Tool for Existing Digital Map (수치지도 좌표계 변환 도구 개발)

  • 윤홍식;조재명;송동섭;김명호;조흥묵
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • This study describes the development of coordinate transformation tool for transforming the digital map using newly derived transformation parameters which are determined from the data referred to the local geodetic datum and the geocentric datum (ITRF2000) and the distortion modelling derived from collocation method. We prepared 190 common points and used 107 points to calculate 7 transformation parameters. In order to evaluate an accuracy of coordinate transformation, 83 common points were tested. In this study, we used Molodensky-Badekas model to derive the 7 transformation Parameters. An accuracy of 0.22m was obtained applying 7 Parameters transformation and the distortion modelling together. It shows that the accuracy of coordinate transformation is improved 72% against the result of 7 parameters transformation only. We developed the transformation tool, GDKtrans, which can be transformed the digital map of scales 1/50,000, 1/25,000 and 1/5,000. We also analyzed the digital map of l/5,000 at six urban areas by GPS observations. The result shows less RMSE of about 1.9 m and large disagreement at position and features. Consequently, we suggests that l/5,000 digital map is necessary of whole revision.

The Technical Benefits of Future GNSS for Taiwan

  • Chiang, Kai-Wei;Yang, Ming;Tsai, Meng-Lun;Chang, Yao-Yun;Chu, Chi-Kuang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.3-8
    • /
    • 2006
  • The next decade promises drastic improvements and additions to global navigation satellite systems (GNSS). Plans for GPS modernization include a civilian code measurement on the L2 frequency and a new L5 signal at 1176.45 MHz. Current speculations indicate that a fully operational constellation with these improvements could be available by 2013. Simultaneously, the Galileo Joint Undertaking is in the development and validation stages of introducing a parallel GNSS called Galileo. Galileo will also transmit freely available satellite navigation signals on three frequencies and is scheduled to be fully operational as early as 2008. In other words, a dual system receiver (e.g., GPS+GALILEO) for general users can access six civil frequencies transmitted by at least fifty eights navigation satellites in space. The advent of GALILEO and the modernization of GPS raise a lot of attention to the study of the compatibility and interoperability of the two systems. A number of performance analyses have been conducted in a global scale with respect to availability, reliability, accuracy and integrity in different simulated scenarios (such as open sky and urban canyons) for the two systems individually and when integrated. Therefore, the scope of this article aims at providing the technical benefits analysis for Taiwan specifically in terms of the performance indices mentioned above in a local scale, especially in typical urban canyon scenarios. The conclusions gained by this study will be applied by the Land Survey Bureau of Taiwanese as the guideline for developing future GNSS tracking facilities and dual GNSS processing module for precise surveying applications in static and kinematic modes.

  • PDF

Optimization of Operation Conditions for Improving the Nitrogen Removal Efficiency in Wastewater Treatment Plant (질소제거효율 향상을 위한 하수처리장 최적 운전조건 도출 연구)

  • Choi, Eun-Hee;Bram, Klapwijk;Mathijs, Oosterhuis
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • 네덜란드 브리젠빈 하폐수처리장 최종방류수의 $NH_4$-N 및 TN(Total Nitrogen)농도를 방류수 수질기준인 각각 4 mg/L와 10 mg/L에 맞추기 위한 최적의 운전조건을 도출하기 위해 다양한 제어시스템이 시뮬레이션 되었다. 본 연구에 사용된 모델은 IWA(International Water Association) 활성슬러지 모델 No.1 (ASM No.1)이었고, GPS-X가 시뮬레이터로 사용되었다. 모델링을 위한 매개변수 민감도 분석결과 ASM No.1의 총 19개 매개변수 중 8개 변수 ($Y_H$, ksh, koh, $b_H$, ${\mu}_a$, $k_{NA}$, kh, ka)가 방류수 수질에 영향을 미치는 것으로 조사되었고 이들 매개변수에 대해 보정을 수행하여 사용하였다. SRT, 호기/무산소기간, 외부탄소원 주입시간 변화에 따른 방류수질 변화를 시뮬레이션하였는데, 호기/무산소 11h/1h인 조건에서 SRT가 20일에서 25일로 증가되면 $NH_4$-N가 5.0 mg/L에서 2.9 mg/L로 감소되었고 호기/무산소 2h/1h의 조건에서는 SRT증가에 따라 $NH_4$-N은 큰 감소를 보이지만, 바이패스되는 유입수량의 감소로 탈질율이 낮아 방류수 TN이 11.1~11.5 mg/L로 예측되는 결과가 도출되었다. 탈질율을 높이기 위한 아세트산 주입은 동일한 양의 아세트산을 무산소 전기간 (1h)동안 균일 주입하는 것 보다는 무산소 초기 15분내에 주입하는 것이 효율적인 것으로 나타났다.

Investigating the Impact of Random and Systematic Errors on GPS Precise Point Positioning Ambiguity Resolution

  • Han, Joong-Hee;Liu, Zhizhao;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.3
    • /
    • pp.233-244
    • /
    • 2014
  • Precise Point Positioning (PPP) is an increasingly recognized precisely the GPS/GNSS positioning technique. In order to improve the accuracy of PPP, the error sources in PPP measurements should be reduced as much as possible and the ambiguities should be correctly resolved. The correct ambiguity resolution requires a careful control of residual errors that are normally categorized into random and systematic errors. To understand effects from two categorized errors on the PPP ambiguity resolution, those two GPS datasets are simulated by generating in locations in South Korea (denoted as SUWN) and Hong Kong (PolyU). Both simulation cases are studied for each dataset; the first case is that all the satellites are affected by systematic and random errors, and the second case is that only a few satellites are affected. In the first case with random errors only, when the magnitude of random errors is increased, L1 ambiguities have a much higher chance to be incorrectly fixed. However, the size of ambiguity error is not exactly proportional to the magnitude of random error. Satellite geometry has more impacts on the L1 ambiguity resolution than the magnitude of random errors. In the first case when all the satellites have both random and systematic errors, the accuracy of fixed ambiguities is considerably affected by the systematic error. A pseudorange systematic error of 5 cm is the much more detrimental to ambiguity resolutions than carrier phase systematic error of 2 mm. In the $2^{nd}$ case when only a portion of satellites have systematic and random errors, the L1 ambiguity resolution in PPP can be still corrected. The number of allowable satellites varies from stations to stations, depending on the geometry of satellites. Through extensive simulation tests under different schemes, this paper sheds light on how the PPP ambiguity resolution (more precisely L1 ambiguity resolution) is affected by the characteristics of the residual errors in PPP observations. The numerical examples recall the PPP data analysts that how accurate the error correction models must achieve in order to get all the ambiguities resolved correctly.

Ionospheric Modeling at North-East Asia using IGS sites

  • Choi, Byung-Kyu;Park, Jong-Uk;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.195-198
    • /
    • 2006
  • One of the major sources of error in precise GPS positioning since the turn-off the Selective Availability(SA) is the ionospheric propagation delay. For the last decades, a lot of the ionospheric researches based on a GPS network have been implemented throughout the world. Especially researches of the ionospheric modeling for Wide Area Argumentation System(WAAS) have been undertaken and published. In mid-latitude regions, typical spatial and temporal variations in ionospheric models delay tend to minimal. The developed ionospheric model calls for a 1.25 degree grid at latitudes and a 2.5 degree grid at longitudes. The precise grid TEC estimated by the inversion technique is also compared with global ionosphere maps(GIMs) which have been provided by several analysis centers(ACs). The results of initial investigations into the suitability of the proposed ionospheric modeling scheme in north-east Asia are presented.

  • PDF