• Title/Summary/Keyword: GPS Continuously Operating Station

Search Result 17, Processing Time 0.022 seconds

Accuracy Analysis of Cadastral Control Points Surveying using VRS case by Jinju city parts (가상기지국을 활용한 지적기준점 관측 정확도 분석 -진주시 일원을 중심으로-)

  • Choi, Hyun;Kim, Kyu Cheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.4
    • /
    • pp.413-422
    • /
    • 2012
  • After development of GPS in the 1960's, the United States released SA(Selective Availability) in 2000 and then the GPS has become commercialized to the present. The result of repeatedly developed GPS observation, the GPS real-time observation methods is RTK which basically always needs two base stations and has a fault of the accuracy decreasing as the distance between a mobile station and a receiver is increasing. Because of these weakness, VRS method has come out. VRS(Virtual Reference Station) generates the imaginary point near mobile station from several observatory datum of GPS, sets the accurate location of mobile station, thus shows high reliability and mobility. Now, the cadastral datum point is used with azimuth, repetition, and graphical traversing method for traverse network. The result of measurement indicates many problems because of different accomplishment interval given point, restrictions on the length of the conductor, many errors on the observations. So, this study did comparative analysis of the cadastral datum points through VRS method by Continuously Operating Reference Station. Through the above comparative analysis, The comparative result between surveyed result with repetition method through total station observed Cadastral Control Points and surveyed result with VRS-RTK has shown that average error of x-axis is -0.08m, average error of y-axis, +0.07m and average distance error is +0.11m.

Accuracy Evaluation of VRS RTK Surveys Inside the GPS CORS Network Operated by National Geographic Information Institute (국토지리정보원 VRS RTK 기준망 내부 측점 측량 정확도 평가)

  • Kim, Hye-In;Yu, Gi-Sug;Park, Kwan-Dong;Ha, Ji-Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.2
    • /
    • pp.139-147
    • /
    • 2008
  • The positioning accuracies tend to deteriorate as the distance between the rover and the reference station increases in the Real-Time Kinematic (RTK) surveys using Global Positioning System (GPS). To solve this problem, the National Geographic Information Institute (NGII) of Korea has installed Virtual Reference System (VRS), which is one of the network-based RTK systems. In this study, we conducted the accuracy tests of the VRS-RTK surveys. We surveyed 50 control points inside the NGII's GPS Continuously Operating Reference Stations (CORS) network using the VRS-RTK system, and compared the results with the published coordinates to verify the positioning accuracies. We also conducted the general RTK surveys at the same control points. The results showed that the positioning accuracy of the VRS-RTK was comparable to that of the general RTK, because the horizontal positioning accuracy was 3.1 cm while that of general RTK was 2.0 cm. Also the vertical positioning accuracy of VRS-RTK was 6.8 cm.

Impact of Multi-GNSS Measurements on Baseline Processing for Control Surveying Applications

  • Pawar, Komal Narayan;Yun, Seonghyeon;Lee, Hungkyu;Nguyen, Dinh Huy
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.2
    • /
    • pp.103-111
    • /
    • 2021
  • A series of experiments have been carried out by using National Geographic Information Institute(NGII)'s Continuously Operating Reference Station (CORS) data with various strategies to analyze the impact of multi-GNSS measurements on baseline processing. The results of baseline processing were compared in terms of ambiguity fixing rate, precision, and hypothesis tests were conducted to confirm the statistical difference. The combination of multi-GNSS measurements has helped to improve ambiguity fixing rate, especially under harsh positioning environments. Combination of GPS, Galileo, BeiDou could get better precision than that of GPS, GLONASS, Galileo, and adding QZSS made the baseline solution's vertical component more precisely. The hypothesis tests have statistically confirmed that the inclusion of the multi-GNSS in the baseline processing enables not only to reduce field observation time length but also to enhance the solution's precision. However, it is of interest to notice that results of the baseline solution are dependent upon the software used. Hence, comprehensive studies should be performed shortly to derive the best practice to select the appropriate software.

Design of the Realtime GNSS Surveying Software for Advancement of Geospatial Information Construction Technology

  • Park, Joon Kyu;Jung, Kap Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.425-430
    • /
    • 2016
  • Currently, start of the operation US GPS, the Russian Glonass, European Galileo, the Chinese Compass satellites for positioning are celebrating a true GNSS (Global Navigation Satellite System) generation. Korea is building advanced infrastructure such as a national network consisting of CORS (Continuously Operating Reference Station), VRS service for real-time precise positioning and perform continuous upgrading. However, the acquisition of geospatial information using the national infrastructure requires many steps and high dependence on foreign software part in this process. This study contributes to advanced construction technology of geospatial information by design of realtime GNSS surveying system. As a results, it has designed the surveying software that can effectively positioning realtime. Designed realtime surveying software can utilized in various fields.

Strategies of Updating Road Framework Data by a Vehicle-based Kinematic Survey (차량이동측량에 의한 도로 기본지리정보 갱신방안에 관한 연구)

  • Yoon, ha-Su;Lee, Jin-Soo;Seo, Chang-Wan;Choi, Yun-Soo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.355-363
    • /
    • 2007
  • The purpose of this study is to maximize the use of framework data by a method for updating road framework data using a economical, rapid, and accurate Vehicle-based kinematic survey to get the latest road data among "transportation framework data" which was built in 2003. We collected data using a Vehicle-based kinematic survey with DGPS (Differential Global Positioning System) in Daejeon and Pyeongtaek city and verified the accuracy of line and point features between surveying and previous results. The result showed that Daejeon city which is located near GPS CORS (Continuously Operating Reference Station)s and receive a signal well had lower errors than 1/5,000 digital base map, and Pyeongtaek city which is located far from the stations and receive a signal badly had errors beyond the limits. The study showed that postprocessing method or Total Station surveying should be used where signals cannot be detected well after analyzing a receiving rate from GPS CORSs, the stations of other organizations should be shared, and further studies are needed.

Analysis of Utilization Status about National GNSS Infrastructure Linked to Precise Positioning Service (정밀 위치결정 서비스에 연계한 국가 GNSS 인프라 활용현황 분석)

  • Park, Joon-Kyu;Jung, Kap-Yong
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.2
    • /
    • pp.401-408
    • /
    • 2017
  • GNSS(Global Navigation Satellite System) is positioning and navigation system using satellites. Accurate positioning is possible in all regions of the world using satellite signals. In Korea, GPS was introduced in the late 1980s. GPS is used in research and work in various fields such as navigation, surveying, and GIS. Since 1995, NGII(National Geographic Information Institute) has installed and operated CORS(Continuously Operating Reference Station) for the practical use of GNSS surveying, RINEX download and VRS(Virtual Reference Station) service was provided for precise positioning. Demand for these services is explosively increasing in the field of surveying. Therefore, there is a need for research to provide good service. In this study, status of national surveying infra structure was researched focused on CORS and its services. As a results, current status of CORS and service were presented. Users of VRS service has increased greatly. In order to provide stable service and advanced surveying, it is necessary to continuously upgrade services such as providing services for various GNSS satellites and securing stability through server redundancy in the data center.

A Study on Improvement of Satellite Surveying Infrastructure through Analysis of Operation Status of GNSS CORS (GNSS 상시관측소 운영 현황 분석을 통한 위성측량 인프라 개선방안 연구)

  • Park, Joon Kyu;Um, Dae Yong
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.11
    • /
    • pp.933-940
    • /
    • 2017
  • The modern society is changing paradigm by the 4th industrial revolution. In these changes, the importance of geospatial information leading to the fusion and connection of persons and objects is increasing day by day. GNSS CORS(Continuously Operating Reference Station) plays a pivotal role in the geospatial information by providing basic data for surveying control points, mapping, navigation, geophysical research, and so on. On the other hand, the satellite surveying technologies are developing rapidly and it is necessary to investigate the status of the satellite surveying environment and search for future directions. In this study, the environment related to satellite survey by operation status of domestic and overseas CORS(Continuously Operating Reference Station) was tried to analyze. Through the research, The operation status of NGII and IGS CORS were presented. It was found that the availability ratio of multiple satellites to the CORS of NGII are lower than that of IGS CORS. Considering the improvement of positioning performance by using multiple GNSS, it is necessary to use multi-satellites in the future.