• Title/Summary/Keyword: GPS 위성

Search Result 933, Processing Time 0.023 seconds

The Accuracy Analysis of Each Test Area Short Baseline Using Satellite Navigation System (위성항법시스템을 이용한 대상지별 단기선 정확도 분석)

  • Park, Woon-Yong;Cha, Sung-Yeoul;Hong, Soon-Heon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.1 s.19
    • /
    • pp.51-57
    • /
    • 2002
  • GPS proved to very practical in the application of geodesy and surveying such Civil Engineering, control point surveying and the deformation surveying o( structure, but the accuracy of static GPS positioning is degraded at the sites which the visible satellites of GPS are less than 4, i.e. the urban area covered with the high building and the industrial zone. Thus, the combined GPS/GLONASS system was introduced to acquire the high accuracy of static positioning by a few satellites. So the combined GPS/GLONASS system show the good results at the sites which the accuracy of positioning is degraded due to few satellites, the cutoff of signal, and multipath in the urban area.

  • PDF

Science Technology - 세계 GPS 개발 경쟁이 치열해지고 있다

  • Kim, Hyeong-Ja
    • TTA Journal
    • /
    • s.135
    • /
    • pp.26-27
    • /
    • 2011
  • 지금 세계는 미국, 러시아, 유럽 등 우주강국들의 '제2의 우주전쟁'이라고 할 수 있는 'GPS 개발 경쟁'이 치열하다. 미국은 전 세계를 대상으로 GPS(Global Positioning System) 서비스를 무료로 제공하고 있기 때문에 세계 모든 나라가 이를 이용하고 있다. 지난 2월 26일에는 러시아 국방부가 글로벌위성항법시스템 (GNSS: Global Navigation Satellite System)인 글로나스(GLONASS) 구축을 위해 23번째 통신위성(GLONASS-K)을 정상궤도에 쏘아 올렸다. 글로나스는 미국의 위성위치확인시스템 GPS와 동일한 러시아판 GPS다. 러시아는 글로벌위성항법시스템 완성을 위해 올해 중 24번째의 인공위성을 쏘아 올려 24개의 인공위성과 2개의 예비위성을 모두 갖추고 운영할 예정이다. 그렇다면 세계는 왜 이토록 위치 확인에 관심을 쏟으며 경쟁을 벌이고 있는 것일까?

  • PDF

Performance Analysis of Positioning Using Combined GPS/Galileo System (GPS/Galileo 결합 시스템의 측위 성능 분석)

  • Lee Dong-Rag;Lee Hung-Kyu;Bae Kyoung-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.3
    • /
    • pp.283-292
    • /
    • 2005
  • After USA removed the Selective Availability (SA), Global Positioning System (GPS) has monopolized the world market and other countries have been depended on GPS, absolutely. So the other countries, Russia, European Community (EC) and Japan, which apprehend to monopolize in technical and strategic parts, are developing the next generation GNSS including GLONASS Galileo and JRANS. And the countries are planning to provide the another GNSS. This research has focused on the next generation GNSS system based on GPS and Galileo system with developing a GNSS simulation software, named as GlMS2005, which generates and analyzes satellite constellation and measurements. Based on the software, a variety of simulation tests have been carried out to recognize limits of GPS-only system and potential benefits of integrated GPS/Galileo positioning in terms of satellite geometry strength and solution accuracy.

Improving Estimation Accuracy of Satellite Clock Error for GPS Satellite Clock Anomaly Detection (GPS 위성 시계 이상 검출을 위한 위성 시계 오차 추정 정확도 향상)

  • Heo, Youn-Jeong;Cho, Jeong-Ho;Heo, Moon-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.225-231
    • /
    • 2011
  • The satellite clock anomalies, one of the abnormal signal factors of the GPS satellites, can have a significant impact on the GPS measurements. However, it can be difficult to detect the anomalies of the satellites clock before the range of the satellites clock error becomes bigger than the range of the other factors, due to the measurement including error of the orbit, ionosphere delay, troposphere delay, multipath and receiver clock. In order to perform quick and accurate detection by minimization of critical range in anomalies of the satellites clock, this paper suggested a solution to detect precise anomalies of the satellites clock after application of carrier smoothing filter from measurement by dual-frequency and adjustment of errors which can be occurred by other factor and the receiver clock errors. The performance of the proposed method was confirmed by comparing to the satellite clock biases which are provided by IGS.

Development of a GPS Receiver System for Satellite Launch Vehicles (위성발사체용 GPS 수신기 시스템의 개발)

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Shin, Yong-Sul;Choi, Hyung-Don;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.929-937
    • /
    • 2008
  • A GPS receiver system utilized on satellite launch vehicles should operate normally under harsh environments as well as high-dynamic conditions. The GPS receiver system to use for range safety of KSLV(Korea Space Launch Vehicle)-I that is the first satellite launch vehicle developed by KARI(Korea Aerospace Research Institute) has been confirmed to survive under the environment of the launcher through extensive terrestrial tests including humidity, high and low temperatures, vacuum, sinusoidal and random vibrations, shocks, acceleration, EMI/EMC(Electromagnetic Interference/ Electromagnetic Compatibility), etc. Several performance tests have been also carried out in order to evaluate tracking capability and accuracy of the GPS receiver under high-dynamic conditions using a GPS signal simulator. Some lessons-learned during development of the GPS receiver system and its special characteristics compared with COTS(Commercial-Off-The-Shelf) GPS receiver systems are described in this paper.

An Adoptable Deployment Method to the Transmitting Antennas of a Ground based GPS System for Aircraft (항공기용 지상 GPS 시스템의 송신안테나 최적배치 방법)

  • Lim, Joong-Soo;Chae, Gyoo-Soo
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.105-109
    • /
    • 2012
  • In this paper, we developed an adoptable deployment method to the transmitting antennas of a ground based GPS system for aircraft. Aircraft generally uses satellite providing GPS signals for accurate position information, but transfers to ground based GPS signals time to time due to jamming signals or bad weather. The position accuracy of the ground based GPS system is highly dependent on the number and position of the GPS transmitting antennas. In this research, we found an algorism to predict the DOP due to the location of the GPS transmitting antennas and had an accurate DOP 2.5 area into 3-dimension from 0 to 10 km by 12 transmitting antennas.

GPS Satellite Repeat Time Determination and Orbit Prediction Based on Ultra-rapid Orbits (초신속궤도력 기반 GPS 위성 repeat time 산출 및 궤도 예측)

  • Lee, Chang-Moon;Park, Kwan-Dong;Kim, Hye-In;Park, Jae-Min
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.4
    • /
    • pp.411-420
    • /
    • 2009
  • To plan a GPS survey, they have to decide if a survey can be conducted at a specific point and time based on the predicted GPS ephemeris. In this study, to predict ephemeris, we used the repeat time of a GPS satellite. The GPS satellite repeat time was determined by analysing correlation among three-dimensional satellite coordinates provided by the 48-hour GPS ephemeris in the ultra-rapid orbits. By using the calculated repeat time and Lagrange interpolation polynomials, we predicted GPS orbits f3r seven days. As a result, the RMS of the maximum errors in the X, Y, and Z coordinates were 39.8 km 39.7 km and 19.6 km, respectively. And the maximum and average three-dimensional positional errors were 119.5 km and 48.9 km, respectively. When the maximum 3-D positioning error of 119.5 km was translated into the view angle error, the azimuth and elevation angle errors were 9.7'and 14.9', respectively.

Performance Analyses of the GPS Receiver for Satellite Launch Vehicles according to Temperature Variation (온도변화에 따른 위성발사체용 GPS 수신기의 성능분석)

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Choi, Hyung-Don;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.101-108
    • /
    • 2005
  • The GPS(Global Positioning System) receiver for satellite launch vehicles which will be mounted on a launch vehicle can be applied to the flight safety system with its accurately calculated position and velocity data during vehicle's flight. This paper analyzes the performance of the GPS receiver such as SNR(Signal to Noise Ratio), fix mode, position and velocity error, number of visible and tracking satellites, and PDOP(Position Dilution of Precision) under temperature variation which is changed from -34$^{\circ}C$ to +71$^{\circ}C$.

Performance Analysis of Integrated GNSS with GPS and QZSS (GPS와 QZSS 통합위성항법 성능 분석)

  • Ko, Kwang-Soob;Choi, Chang-Mook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.1031-1039
    • /
    • 2016
  • The Quasi-Zenith Satellite System(QZSS) is the Japanese satellite navigation system, which designs to increase the GPS system's visibility in the urban areas. The first satellite(Michibiki) was launched in 2010 and started to broadcast navigation signals. Therefore, the purpose of the research is to analyze the performance of GPS and QZSS based on the advantage of the integrated GNSS. Especially, the study has been processed in terms of improving satellite navigation parameters around Korean Peninsula. To do this, there have been the comprehensive analysis of the QZSS characteristics, the experimental test, and its statistical analysis for realizing advantage of GPS and QZSS. Through these systemic steps, it was recognized that the integrated GPS and QZSS has more reliable than GPS in case of not only limited visibility but also ordinary positioning. Additionally, the integrated GPS and QZSS would be very useful to improve the various navigation parameters around the peninsula.

Precision GPS Orbit Determination and Analysis of Error Characteristics (정밀 GPS 위성궤도 결정 및 오차 특성 분석)

  • Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.4
    • /
    • pp.437-444
    • /
    • 2009
  • A bi-directional, multi-step numerical integrator is developed to determine the GPS (Global Positioning System) orbit based on a dynamic approach, which shows micrometer-level accuracy at GPS altitude. The acceleration due to the planets other than the Moon and the Sun is so small that it is replaced by the empirical forces in the Solar Radiation Pressure (SRP) model. The satellite orbit parameters are estimated with the least-squares adjustment method using both the integrated orbit and the published IGS (International GNSS Service) precise orbit. For this estimation procedure, the integration should be applied to the partial derivatives of the acceleration with respect to the unknown parameters as well as the acceleration itself. The accuracy of the satellite orbit is evaluated by the RMS (Root Mean Squares error) of the residuals calculated from the estimated orbit parameters. The overall RMS of orbit error during March 2009 was 5.2 mm, and there are no specific patterns in the absolute orbit error depending on the satellite types and the directions of coordinate frame. The SRP model used in this study includes only the direct and once-per-revolution terms. Therefore there is errant behavior regarding twice-per-revolution, which needs further investigation.