• Title/Summary/Keyword: GPS 위성

Search Result 938, Processing Time 0.03 seconds

PRECISE ORBIT DETERMINATION OF GPS SATELLITES FOR REAL TIME APPLICATIONS (실시간 응용을 위한 GPS 정밀 궤도력 결정)

  • 임형철;박필호;박종욱;조정호;안용원
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.129-136
    • /
    • 2001
  • The accuracy of GPS applications is heavily dependent on the satellite ephemeris and earth orientation parameter. Specially applications like as the real time monitoring of troposphere and ionosphere require real time or predicted ephemeris arid earth orientation parameter with very high quality. IGS is producing IGS ultra rapid product called IGU for real time applications which includes the information of ephemeris and earth orientation. IGU is being made available twice everyday at 3:00 and 15:00 UTC arid covers 48 hours. The first 24 hours of it are based on actual GPS observations and the second 24 hours extrapolated. We will construct the processing strategy for yielding ultra rapid product and demonstrate the propriety through producing it using 48 hours data of 32 stations.

  • PDF

Accuracy Estimation of RTK GPS mapping in the Different Seasons (계절별 RTK GPS의 Mapping 정확도 평가)

  • Lee In-Su
    • Spatial Information Research
    • /
    • v.13 no.1 s.32
    • /
    • pp.19-29
    • /
    • 2005
  • In this study, Real Time Kinematic GPS(RTK GPS) was conducted twice at the same site in two different seasons, respectively to check the possibility of it as the mapping tool, and how the factor affecting the accuracy of it. As a result, most parts of a small garden except f3r the worst environments surrounded with lots of tree canopy and several buildings were mapped using RTK GPS even in spring, full of a green foliage and winter as well. However, the mapping accuracy and the availability of RTK GPS were not so high. The study showed that it is recommended in RTK GPS mapping to utilize Total Station, etc. in the worst urban environments unable to track the satellite signals with ease.

  • PDF

The Digital Road Map Using World Geodetic System-84 Coordinates System (WGS-84 좌표계에 의한 수치지도 작성)

  • 배상진;최철웅;강인준
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.15 no.2
    • /
    • pp.269-275
    • /
    • 1997
  • Car Navigation System with Global Positioning System (GPS) can display position direction and the shortest cut of one's destination. The position datum for GPS in World Geodetic System 1984 (WGS-84) coordinates system need to transform Bessel coordinates system and process Map projection. Since 1987, GPS has used the WGS-84. WGS-84 is a geocentric equipotential ellipsoid of revolution which is defined four parameters. In this study, by comparing the digitized topographical map with the digital map of GPS datum we can consider the technique of WGS84 digital map.

  • PDF

Development of Bridge Warning System by Using GPS Surveying Method (GPS측량기법을 이용한 교량경보시스템 개발)

  • 서동주;노태호;이종출
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.4
    • /
    • pp.415-421
    • /
    • 2002
  • A recently lot of facilities have been constructed from rapidly development of science and economic growth. Among them, bridges are tending to be large because of geometrical problems of the road. And then the method of satellite surveying is being practical use variously out of present surveying methods. Therefore in this study it takes a measurement of bridge displacement using the RTK GPS Mode instead of the using mechanical measurement system. The observation value was verified by using Total Station to inspect observation value of RTK GPS. And then, by using the Delphi of object intending language, developed bridge warning system and applied it. The result of this study was found verification error of 0.2~8.3mm, therefore the measurement of bridge displacement of grand bridge can be applied by using An GPS.

GIS Technology Utilizing GPS Accuracy Improve Algorithm (GIS 기술을 활용한 GPS 정확도 향상 알고리즘)

  • Choi, Hyung-Wook;Seong, Ki-Young;Kim, Ho-Sung;Kim, Han-Gyung;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.575-576
    • /
    • 2016
  • Recently utilizing GPS (Global Positioning System) technology has become the research in progress to improve the accuracy. However, if you encounter problems when you receive a satellite signal reception accuracy it is also significantly lowered. In this paper, we designed a system that combines the GPS technology and the GIS (Geographic Information System) technology, which provides information about the specified location to increase the accuracy. Compare the specified location and the user's location information to determine whether the user enters for the location. Accordingly, is utilized by the GIS technique considered to make improve the accuracy of the location information even when there is interference in the received satellite signal, the user receives a service specified location.

  • PDF

A Study of Effects on GPS and GLONASS Time offset according to leap seconds in GNSSS time transfer (GNSS 시각 전송에서 윤초 적용 여부에 따른 GPS 시각과 GLONASS 시각의 오프셋 영향 연구)

  • Yu, Dong-Hui;Lee, Young-Kyu;Yang, Sung-Hoon;Lee, Chang-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2628-2633
    • /
    • 2014
  • BIPM(International Bureau of Weights and Measures) uses GPS Time Transfer technique for UTC(Universal Time Coordinated). Recently, since GLONASS constellation started the service, studies on GLONASS time transfer and combination of GPS and GLONASS time transfer have been conducted. This paper introduces GNSS time, UTC and leap seconds and proposes the time offset results for applicability of leap seconds in GLONASS time transfer.

Performance Analysis of the KOMPSAT-1 GPS Receiver (아리랑 1호 탑재 GPS 수신기의 궤도 상 성능 분석)

  • Kim, Hae-Dong;Lee, Jin-Ho;Kim, Eun-Kyou;Choi, Hae-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.92-97
    • /
    • 2005
  • In this paper, the performance of the KOMPSAT-1 GPS receiver on orbit was analyzed. OD (Orbit Determination) accuracy using GPS navigation solutions and GPS visibility were investigated with respect to the configuration of the GPS receiver. Indeed, the problem such as ‘3D Fix Loss’ observed during the mission was presented. As a result, the OD accuracy of ‘Best-of-4’ Position Fix Algorithm with 0 degree of mask angle was slightly better than that of ‘N-in-View’ Position Fix Algorithm. On the other hand, the GPS visibility under ‘N-in-View’ Algorithm is better than that of ‘Best-of-4’ Algorithm. The occurrence of temporal 3D Fix Loss is reduced when the ‘N-in-View’ Position Fix Algorithm was selected.

GPS Surveying for Application of Geodetic Point (실용측지점의 활용을 위한 GPS측량)

  • 오창수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.1
    • /
    • pp.33-38
    • /
    • 2002
  • The object of this study is to verify the feasibility in the application of the GPS system data to the existing geodetic and cadastral survey system. WGS-84 data, which were converted into domestic geometric coordinate system, were compared with those of the existing triangular coordinate system in Gwangju area. The significant results in this study are summarized below ; GPS system is more speedy and accurate than the existing triangular coordinate system in the survey of points in triangular coordinate or on the map. And the error in the GPS system was more uniform than that of the existing triangular coordinate system. GPS system is more effective than the existing triangular coordinate system in the future geodetic and cadastral survey because GPS data can be processed by the computer. It is necessary to calculate the conversion coefficients to apply GPS data practically to the existing geodetic and cadastral survey system. It can be achieved by the individual investigation on how the existing data in the domestic coordinate system were determined.

Circumstance Change of GNSS & Application Strategy of Navigation Technology for Modem Weapon System (GNSS 구축 환경변화와 현대무기체계에의 항법기술 사용전략)

  • Ko, Kwang-Soob
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.267-275
    • /
    • 2010
  • Recently, the implementation & modern policy for Global Navigation Satellite System have actively been performed by USA, RUSSIA, EU & CHINA. Therefore 100+ navigation satellites will be in orbit by 2015, and the user of military and civil will benefit from the use of a total constellation of 100+ satellites. It means that the deepest dependence to GPS would be declined. In the paper, the latest technology development & implementation policy of GNSS have been analyzed. Specially, we focused on circumstance change of GNSS & application of navigation technology for modem weapon system. Finally, the application strategy of the integrated GNSS is suggested for military and civil as well.

Analysis of Effect of Spoofing Signal According to Code Delay in GPS L1 Signal (GPS L1 신호에서 코드지연에 따른 기만신호 영향 분석)

  • Kim, Tae-Hee;Sin, Cheon-Sig;Lee, Sang-Uk
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.128-133
    • /
    • 2012
  • In this paper, we analysis the effect of error of code tracking and frequency tracking according to the chip delay of spoofing signal through the simulation. Firstly, we investigate the type of spoofing signal and defense technical of spoofing attack. For simulation, we generated the intermediate spoofing signal using the software GNSS signal generator simulator(SGGS), the intermediate spoofers synchronize its counterfeit GPS signals with the current broadcast GPS signals. The software GPS receiver simulator(SGRS) received the spoofing signal and normal signal from SGGS, and process the signals. In paper, we can check that the DLL and PLL tracking loop error are generated and pseudo-range is changed non-linear according to chip delay of spoofing signal when the spoofing signal is entered. As a result, we can check that navigation solution is incorrectly effected by spoofing signal.