• Title/Summary/Keyword: GPS 관측데이터 품질관리

Search Result 5, Processing Time 0.02 seconds

Developement of GPS Data Quality Control Program (GPS 데이터 품질관리 프로그램의 개발)

  • Yun Hong-Sic;Lee Dong-Ha;Lee Young-Kyun;Cho Jae-Myung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.9-18
    • /
    • 2006
  • This paper describes a new program called GPS_QC needed to check the quality of GPS observations before post-processing so that the surveyors can be improved the precision of GPS data analysis. The GPS_QC was designed to calculate the quality control (QC) parameters such as data gaps, cycle slips, low elevation angle, inonspheric delay, multi-path effects and DOP etc, within the period of GPS observation. It can be used to read and calculate the QC parameters from RINEX files. This program gives users brief statistics, time series plots and graphs of QC parameters. The GPS_QC can simply be performed the quality checking of GPS data that was difficult for surveyors in the field. It is expected that we can be improved the precision of positioning and solved the time consuming problem of GPS observation.

GPS Observation Data Quality Control using Control Parameters (Control Parameter를 이용한 GPS 관측데이터의 품질 관리)

  • 이동하;윤홍식;이영균
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.87-93
    • /
    • 2004
  • 본 연구에서는 효율적인 GPS 데이터의 품질관리를 위한 GPS_QC 프로그램을 개발하여, GPS 데이터의 Quality 판단할 수 있는 총 8개의 Control 인자(위성의 배치, Multipath 오차량, 전리층 지연량 및 위성신호 강도 등)를 계산 할 수 있었으며, GPS 데이터 품질에 관련된 Control 인자의 결과값 및 허용오차 범위, 실제 관측데이터의 허용오차의 포함여부를 시계열 그래프와 보고서 형태로 제공하여 현장 등에서 간단하고 효율적으로 GPS 데이터의 품질관리를 가능하게 한다. 따라서 기존에 GPS 데이터 해석 후에나 판단이 가능했던 데이터의 품질을 현장이나 실내에서 직접 확인할 수 있게 함으로서 재측과 데이터 처리 시 소요되는 시간과 경비를 절감할 수 있을 것으로 판단된다.

  • PDF

Investigation on Terrestrial Laser Scanner(TLS) Surveying and its Guideline (지상레이저스캐너(TLS) 측량과 가이드라인에 관한 연구)

  • KIM, Jin-Woo;JEONG, Woon-Sik;LEE, Young-Jin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.55-64
    • /
    • 2021
  • In this study, the operation method and accuracy of Terrestrial Laser Scanner(TLS) are reviewed and discussed by experimental measurements, and guidelines of TLS surveying operation are proposed. Ground control points and TLS station points were measured by TS and/or GPS, in TLS observation experiments, and wood targets were used which designed by this study team. RMSE accuracy of TLS scan shows that TLS surveying operation can be used in the topographic mapping of 1/250 scale and level of 1/100 BIM, the drone data also used in TLS data completeness. Additionally, as the results of the field experiment, the guidelines for TLS surveying operartions were proposed.

Precision Improvement of Long Baseline Determination by IGS Ephemeris and Geodetic Positioning of '96 Korea GPS Fiducial Network (정밀(IGS)력을 이용한 장기선 해석 및 전국망 성과 분석)

  • Choi, Yun-Soo;Sa, Jae-Kwang;Cho, Heung-Muk;Park, Byung-Uk;Kim, Woong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.1
    • /
    • pp.51-58
    • /
    • 1998
  • The goal of this study is to propose a precision improvement scheme for long baseline determination based on the use of IGS ephemeris and different cutoff angles. It is also to present the adjustment results of ’96 Korea GPS fiducial network. In order to obtain more accurate coordinates in precise geodetic surveying, the revision of specification is necessary for the field operation and procedure of baseline processing.

  • PDF

Establishment of A WebGIS-based Information System for Continuous Observation during Ocean Research Vessel Operation (WebGIS 기반 해양 연구선 상시관측 정보 체계 구축)

  • HAN, Hyeon-Gyeong;LEE, Cholyoung;KIM, Tae-Hoon;HAN, Jae-Rim;CHOI, Hyun-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.40-53
    • /
    • 2021
  • Research vessels(R/Vs) used for ocean research move to the planned research area and perform ocean observations suitable for the research purpose. The five research vessels of the Korea Institute of Ocean Science & Technology(KIOST) are equipped with global positioning system(GPS), water depth, weather, sea surface layer temperature and salinity measurement equipment that can be observed at all times during cruise. An information platform is required to systematically manage and utilize the data produced through such continuous observation equipment. Therefore, the data flow was defined through a series of business analysis ranging from the research vessel operation plan to observation during the operation of the research vessel, data collection, data processing, data storage, display and service. After creating a functional design for each stage of the business process, KIOST Underway Meteorological & Oceanographic Information System(KUMOS), a Web-Geographic information system (Web-GIS) based information platform, was built. Since the data produced during the cruise of the R/Vs have characteristics of temporal and spatial variability, a quality management system was developed that considered these variabilities. For the systematic management and service of data, the KUMOS integrated Database(DB) was established, and functions such as R/V tracking, data display, search and provision were implemented. The dataset provided by KUMOS consists of cruise report, raw data, Quality Control(QC) flagged data, filtered data, cruise track line data, and data report for each cruise of the R/V. The business processing procedure and system of KUMOS for each function developed through this study are expected to serve as a benchmark for domestic ocean-related institutions and universities that have research vessels capable of continuous observations during cruise.