• Title/Summary/Keyword: GPS/Levelling

Search Result 24, Processing Time 0.024 seconds

Comparison of GPS/Levelling Geoid with PNU95 Geoid in Cheju Island (제주도의 GPS/Levelling 지오이드와 PNU95 지오이드)

  • Choi, Kwang-Sun;Park, Je-Hui;Hong, Sun-Hun
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.13-24
    • /
    • 2000
  • In this study, GPS surveying at bench marks in Cheju Island and with these data, calculate GPS/Levelling geoid in Cheju area. And compare this geoid with PNU95 Geoid. The results are as follows : 1. The ellipsoidal height of each bench mark was measured ${\pm}3cm$ with accuracy in GPS surveying. 2. Calculated CPS/Levelling Geoid well represents the variations of Cheju terrain. The correlation formula between the geoid and elevation above sea level in Cheju area is as fellow : $$N\;=\;0.001082\;{\times}\;h\;+\;25.458\;{\pm}\;0.227\;s.d.$$ 3. Calculated GPS/Levelling Geoid and PNU95 Geoid are welt fitted and the RMS difference between the two Geoids is 0.14 m.

  • PDF

GPS/Levelling Geoid of the Southern Korean Peninsula

  • Choi, Kwang-Sun;Lee, Jung-Mo
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.25 no.1
    • /
    • pp.15-22
    • /
    • 1997
  • The GPS/levelling geoid calculated from GPS survey that data at 123 bench marks represents an appropriate regional geoid of the southern Korean peninsula. The GPS/levelling geoid fits best to the geoid calculated from the EGM96 geopotential model of degree and order to 360 with RMS difference 0.176 m. The good agreement of the GPS/levelling geoid with the EGM96 geoid suggests that the bench mark network is well established in Korea and the EGM96 geopotential model well represents the gravity field in the southern Korean peninsula.

  • PDF

A study of the GPS/Levelling in Jeju island using PGPS (제주지역에서 PGPS를 이용한 GPS 수준측량 적용)

  • 고인세;박준구;조진동;임영빈
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.3-8
    • /
    • 2004
  • This study describes the validation of the GPS/Levelling using GPS data that were obtained from three Permanent GPS stations of the Jeju island. Each orthometric height of three Permanent GPS stations was calculated from the Bench mark of levelling with Traverse-survey and relative baseline processing The test result shows that the error of closure of orthometric height was about 1.6cm and one of ellipsoidal height was about 1.5cm. This result represents that the geoidal height and undulations are regular in the Jeju island. According to the test results, it is identified that one can calculate the orthometric height using Permanent GPS station data rather than traditional levelling method which has a some complexity especially in Jeju island.

  • PDF

The Update of Korean Geoid Model based on Newly Obtained Gravity Data (최신 중력 자료의 획득을 통한 우리나라 지오이드 모델 업데이트)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun;Keum, Young-Min;Moon, Ji-Yeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.1
    • /
    • pp.81-89
    • /
    • 2011
  • The previous land gravity data in Korea showed locally biased irregular distribution. Especially, this problem was more serious in the mountainous area where the data density was significantly low. The same problem appeared in GPS/Levelling data thus the precision of the geoid could not be improved. From 2008, new gravity and GPS/Levelling data has been collected by the unified control point and survey on the benchmark project which were funded by the national geographic information institute. The newly obtained data has much better distribution and precision so that it could be used for update precision of geoid model. In this study, the new precision geoid has been calculated based old and new gravity data and this model showed 5.29cm of precision compared to 927 points of GPS/Levelling data. And the degree of fit and precision of hybrid geoid has been calculated 2.99cm and 3.67cm. The new gravimetric geoid has been updated about 27% over whole country. And it showed 42% of precision update due to collection of new gravity data on the Kangwon/Kyeongsang area which showed quite low distribution. In 2010, about 4,000 points of gravity and 300 points of GPS/Levelling data has been obtained by unified control and survey on benchmark project. We expect that new data will contribute to updating geoid precision and veri tying precision more objectively.

Setting Out of Construction Works Using GPS Geoid Height. (GPS 지오이드고를 이용한 측설시공)

  • Kwon, Chan-O;Lee, Young-Jin
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.89-92
    • /
    • 2007
  • This investigation aims at calculating the geoid height, distance between the ellipsoidal height and the orthometric height by GPS/Levelling data for nationwide 58 Bench Marks, and calculating the effect of geoid height to engineering public works. The accuracy of the results from baseline analyses and adjustment of a network. using GPS surveying data by nationwide 58 BM show 4mm for horizontal direction and 7cm for vertical direction. The 58 geoid height was calculated by GPS/Levelling. For a construction work field GPS/Levelling for distributed 4 BM in test area can calculate the orthometric height in 20 ppm relativity accuracy with 95% reliability. Besides the calculated geoid height in the investigation was 0.367m higher than EGM96 model. The test results of a engineering work site, the result by EGM96 model was 1.8cm in 10km and it was also 3.6cm in interpolation method. The results show that it is equivalent to levelling of $20mm\sqrt{S}$.

  • PDF

Analysis of GPS Levelling in Small Area for Precise Leveling (정밀 수준측량을 위한 소규모 지역에서의 GPS 수준성과 분석)

  • 강준묵;임영빈;이은수;선재현
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.51-55
    • /
    • 2004
  • In this study, the levelling and the GPS levelling were carried out with 6 points in 2km${\times}$2km area and the results were analysed. As a result of this research, we had to observe more than 15 minutes to get the height accuracy of 10mm by single frequency GPS receiver in relative surveying. We could not get more better accuracy than 10mm. we could get the height accuracy of within 10mm from observing only more than 5 minutes by double frequency GPS receiver, and of within about 3mm from observing more than 10 minutes. When the number of fixed points is within 3, the level net adjustment result is very close to the one of direct levelling survey. When the number of fixed points is 3, the less the area of triangle the better the adjustment result, and the case of including measure point has more better accuracy than that of non-including measure point.

  • PDF

Accuracy Improvement of GPS/Levelling using Least Square Collocation (Least Square Collocation에 의한 GPS/Leveling의 정확도 개선)

  • Yun Hong-Sic;Lee Dong Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.4
    • /
    • pp.385-392
    • /
    • 2005
  • This paper describes an accuracy analysis of newly developed gravimetric geoid and an improvement of developed geoid using GPS/Levelling data. We developed the KGEOID05 model corrected with the correction term. The correction term is modelled using the difference between GPS/Levelling derived geoidal heights and gravimetric geoidal heights. The stochastic model used in the calculation of correction term is the least squares collocation technique based on second-order Markov covariance function. 373 GPS stations were used to model the correction term. The standard deviation of KGEOID05 is about 11 cm and it indicates that we can be determined accurate heights ($2{\sim}3\;cm$) when we made precise modelling using KGEOID05 and a few GPS measurements for the local area.

Geometric Geoid Determination in South Korea using GPS/Levelling Data

  • Yun, Hong-Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.285-289
    • /
    • 1995
  • This paper describes the determination of geoid using height data measured by GPS and Spirit Levelling. The GPS data of the 88 stations were used to determine the geoid undulation (N) which can be easily obtained by subtracting the orthometric height(H) from the ellipsoidal height(h). From the geoid undulation (N) calculated at each station mentioned above, geoid plots with a contour interval of 0.25 m were drawn using two interpolation methods. The following interpolation methods were applied and compared with each other: Minimum Curvature Method and Least Squares Fitted Plane. Comparison between geometric geoid and gravimetric geoid undulation by FFT technique was carried out.

  • PDF

Accuracy Analysis of New Geopotential Model using GPS/Levelling Data (GPS/Levelling데이터를 사용한 새로운 지구중력장모델의 정확도 분석)

  • Yun Hong-Sic;Cho Jae-Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.4
    • /
    • pp.353-358
    • /
    • 2005
  • The purpose of this paper is to evaluate a new geopotential model, EIGEN-CG01C which had been developed from CHAMP and GRACE mission observations and surface gravity data. The accuracy analysis was conducted by comparing the geoidal heights computed from two types of geopotential models (i.e., EIGEN-CG01C and EGM96) with spirit leveled GPS bench mark. To this end, three hundred twenty GPS leveled bench marks are used as bases for the numerical investigation. From the analysis, it was possible to conclude that EIGEN-CG01C was more suitable to upgrade the KGEOID 98 since the results that the EGM96 was slightly biased.

Construction of the Airborne Gravity Based Geoid and its Evaluation (항공중력기반 지오이드 모델 구축 및 검증)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun;Lee, Bo-Mi;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.159-167
    • /
    • 2009
  • To obtain the gravity data with consistent quality and good distribution over Korea, to overcome the difficulties in constructing precision geoid from biased distribution of ground data, to resolve the discrepancy between the ground and ocean gravity data, an airborne gravity survey was conducted from Dec. 2008 to Jan. 2009. The data was measured at the average flying height of 3,000m and the data with cross-over error of 2.21mGal is obtained. The geoid constructed using this airborne gravity data shows the range of 9.34 $\sim$ 33.88m. Comparing the geoid with respect to the GPS/levelling data, a precision of 0.145m is obtained. After fitting, the degree of fit to GPS/levelling data was calculated about 5cm. It was found that there exists large biases in the area of south-western and northern part of the peninsular which is considered to be the effect of distorted vertical datum in Korea. Thus, more investigation on vertical datum would be needed in near future.