• Title/Summary/Keyword: GPR exploration

Search Result 119, Processing Time 0.032 seconds

Relationship Analysis of Volumetric Water Content According to the Dielectric Constant for Stability Analysis of Ground Excavation (굴착의 안정성에 미치는 영향인자 분석을 위한 전자기적 유전상수와 체적함수비와의 상관관계 분석기법 연구)

  • Han, Yushik;Sohn, Hee Jeung;Yoo, Ki Cheong
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.3
    • /
    • pp.153-163
    • /
    • 2016
  • In order to prevent ground collapses by groundwater level drawdown, we need to understand the groundwater flow and also make an analytical approach to the cause of the collapses. In this study, we used the result of the soil lab tests to compare and review the suitability of the various interaction equations about the relation between volumetric water content and the dielectric constant. In addition, using GPR (Ground-Penetrating Radar), we reviewed the possibility of calculating an estimate of dielectric constant. Lastly, we applied seepage analysis and stress-strain analysis to the sandy ground given by ground excavation. In comparison with the previous result of the soil lab tests, we similarly predicted the suction of unsaturated soil from results of stress-strain analysis considered the seepage force for the unsaturated soil.

Numerical Analysis and Exploring of Ground Condition during Groundwater Drawdown Environment in Open-cut Type Excavation (개착식 굴착공사시 지하수위 저하로 인한 지반상태 탐사 및 해석기법 연구)

  • Han, Yushik
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.93-105
    • /
    • 2018
  • Precise investigation and interpretation of the ground subsidence risk factors needed to predict and evaluate the settlement problems of the surrounding ground due to the ground excavation. There are various geophysical exploration methods to investigate the ground subsidence risk factors. However, there are factors that influence the characteristics of the underground medium in these geophysical methods, and the actual soil contains complex factors affecting geophysical exploration. Therefore, it is necessary to analyze the effects on the geophysical methods based on the understanding of the geotechnical properties of soil. In this study, a test bed was constructed to consider various complicated factors in the complex ground and the ground behavior was analyzed by numerical analysis. In addition, we analyzed the limitations on investigating the ground subsidence risk factors through ground penetration radar (GPR) survey. As a result, ground subsidence of Open-cut Type Excavation is caused by various factors. Especially, in the case of soft ground condition, it was found that it was greatly influenced by the flow change of groundwater level. At the center frequency of GPR of 250 MHz, the attenuation of the electromagnetic wave is severely attenuated in the clay with high electrical conductivity, making it difficult to penetrate deeply into the ground (4 m below the surface). As the electromagnetic waves pass through the groundwater level below the groundwater, the attenuation of the electromagnetic waves becomes severe.

A geophysical survey result over a hydrocarbon contaminated site (물리탐사를 이용한 국내 유류오염지역 조사 사례)

  • Song Yoonho;Park Sam Gyu;Seol Soon Jn;Choi Seong-Jun;Chung Seung-Hwan
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2001.09a
    • /
    • pp.122-140
    • /
    • 2001
  • We have applied the geophysical survey, mainly electric and electromagnetic (EM) methods, to a test site contaminated by hydrocarbon waste disposal and local spill. The multi-frequency, moving source & receiver EM survey along with ground penetrating radar (GPR) showed a fairly good performance in detection of buried metal pipes and objects. Magnetic survey measuring vertical and horizontal gradients were so sensitive to the small metallic objects spread over the surface that it's hard to discriminate the buried pipe. We chose electrical resistivity, EM and GPR survey to examine the soil contamination. Depth slices of resistivity distribution as the results of the inversion of resistivity and EM data coincided each other and closely matched the contaminated area determined by chemical analysis of the soil samples. GPR images did not show the reflection events related with contamination plume since there are no distinct spill in this site. We inferred the contamination using the penetration depth of the GPR energy, which could be used as auxiliary information to the resistivity and EM results. We summarized the applicability of each survey methods based on this results and proposed a desirable survey scheme for the determination of hydrocarbon contaminated site.

  • PDF

A Study on Assessment Techniques of Levee Safety (하천제방의 안전성 평가기법 연구)

  • Yoon Jong-Ryeol;Kim Jin-Man;Choi Bong-Hyuck
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.111-116
    • /
    • 2005
  • 2-D and 3-D resistivity surveys were carried out at the Deok-In2 levee during the period of arid and rainy seasons to assess the waterproof effectiveness of sheet pile and grouting sections and detect the location of pipings. Inverted resistivity sections clearly indicated the boundaries of sheet pile and grouting sections and the locations of pipings observed at the ground surface. Besides, GPR survey was carried out to verify the rear cavity of culvert in levee which is thought to be the major cause of levee breakdown, But the quality of GPR data was very poor due to the steel reinforcements buried in the culvert. Because it is not easy to apply various geophysical surveys upon concrete structures, newly designed hydraulic response test was proposed to assess the continuity of rear cavity of culvert in this study.

  • PDF

GEOTECHNICAL ENVIRONMENT SURVEY (2) (고심도 지반환경 조사 - 비파괴 물리탐사의 적용 (2))

  • HoWoongShon;SeungHeeLee;HyungSooKim
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.4
    • /
    • pp.261-268
    • /
    • 2003
  • Lots of various utilities are buried under the surface. The effective management of underground utilities is becoming the very important subject for the harmonious administration of the city. Ground Penetrating Radar(GPR) survey including other various underground survey methods, is mainly used to detect the position and depth of buried underground utilities. However, GPR is not applicable, under the circumstances of shallow depth and places, where subsurface materials are inhomogeneous and are composed of clay, salt and gravels. The aim of this study is to overcome these limitations of GPR and other underground surveys. High-frequency electromagnetic (HFEM) method is developed for the non-destructive precise deep surveying of underground utilities. The method is applied in the site where current underground surveys are useless to detect the underground big pipes, because of poor geotechnical environment. As a result, HFEM survey was very successful in detecting the buried shallow and deep underground pipes and in obtaining the geotechnical information, although other underground surveys including GPR were not applicable. Therefore this method is a promising new technique in the lots of fields, such as underground surveying and archaeology.

  • PDF

A Geophysical Study on Site Characteristics of the Western Pagoda of the Mireuksa Site, Iksan, Korea (익산미륵사지 지반특성에 대한 지구물리학적 연구)

  • Je-Ra-
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • A number of tangible cultural properties have been left to suffering damage without any scientific conservation or maintenance. We conducted nondestructive geophysical explorations around the Western pagoda of the Iksan Mireuksa Temple for the purpose of preparing the counterplan of its conservation and maintenance and of utilizing the geophysical information for the design of repair. Geophysical image of the shallow subsurface around the construct resulting from electric resistivity, seismic refraction, and GPR methods carried out along 6 lines in the site was used to investigate the relationship between the foundation characteristics and the structural safety. Tilting of the pagoda southwest towards seems to result from the low resistivity zones found in the southwestern part. The GPR and seismic surveys revealed a boundary at depth of 3.3~3.5m dividing into two layers, compacted overlaid soil and the original ground. The boundary appears to dip southwest. The artificial layer as a foundation does not covers as much as the bottom area of the pagoda. This top soil dipping southwest seems to result in tilting of foundation southwestward towards. Our geophysical result suggests ground reinforcement in the western part of the survey area for the conservation of the construct.

  • PDF

A Research Study on the Foundation of the Three Storied Stone Pagoda(Seokgatap) of Bulguksa temple in GyeongJu (경주 불국사 삼층석탑(석가탑) 기초에 관한 조사연구)

  • Ji, Sung-Jin;Moon, Jeong-Min
    • Journal of architectural history
    • /
    • v.24 no.5
    • /
    • pp.49-58
    • /
    • 2015
  • The purpose of this study is to analyze the overall condition of the foundation for the three storied stone pagoda of Bulguksa temple in GyeongJu. As a research method, exploration of the electrical resistivity, refraction seismic, surface wave exploration, GPR exploration, Reputation loading test. The results of the investigation, the range of the foundation was formed in foundation stone outskirts of 1.5 ~ 2.0m. It was confirmed to be about 2.0m depth. The depth of the foundation becomes shallower from the base portion to the outside. And the bearing capacity of foundation was sufficient conditions to weight. It can sufficiently support the weight of pagoda. And, the result of this investigation becomes basis data for repair work.

Investigation of the Geoelectrical Response at the Hydrocarbon-impacted Zone (유류 오염대의 전기적 물성 특성 연구)

  • Kim, Chang-Ryol;Ko, Kyung-Seok;Kim, Jung-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.225-230
    • /
    • 2007
  • A physical model experiment with GPR and 3-D resisitivity survey were conducted to investigate the geoelectrical response of hydrocarbon-impacted zone, so called smeared zone, on the geophysical data. The results from the experiment show that GPR signals were enhanced when LNAPL was present as a residual saturation in the water saturated system (${\varepsilon}_r$ = 21) due to less attenuation of the electromagnetic energy through the medium, compared to when the medium was saturated with only water (${\varepsilon}_r$ = 21). 3-D resistivity data obtained from the former gas station site demonstrate that the highly contaminated zones could be imaged with low resistivities attributed to the biodegradation of petroleum hydrocarbons at the aged, hydrocarbon-impacted sites. The study results also show that the geophysical methods, as a non-invasive sounding technique, can be a very useful tool for mapping hydrocarbon-contaminated zones.

  • PDF

The genes associated with gonadotropin-releasing hormone-dependent precocious puberty

  • Hwang, Jin-Soon
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.1
    • /
    • pp.6-10
    • /
    • 2012
  • Human puberty is a complex, coordinated biological process with multiple levels of regulations. The timing of puberty varies greatly in children and is influenced by both environmental and genetic factors. The key genes of pubertal onset, $KISS1$, $GPR54$, $GNRH1$ and $GNRHR$, may be major causal factors underlying gonadotropin-releasing hormone-dependent precocious puberty (GDPP). Two gain-of-function mutations in $KISS1$ and $GPR54$ have been identified recently as genetic causes of GDPP. $GNRH1$ and $GNRHR$ are also gene candidates for GDPP; however no mutations have been identified in these genes. Presently potential genetic causes like $LIN28B$ continues to appear; many areas of research await exploration in this context. In this review, I focus primarily on the genetic causes of GDPP.

In-Situ Application of the Steel Pipe jacking with Grouting (그라우팅을 병행한 강관추진공법의 현장 적용성 연구)

  • Jung, Min-Hyung;Lim, Ho-Jung;Shin, Chang-Sub;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.152-160
    • /
    • 2009
  • The pipe jacking method which is a non-excavation method is frequently used due to constructability and economical efficiency in a medium or small-sized pipeline construction. However, jacking process of the method still causes problems that the base ground is disturbed and loosen. These lead to surface settlement, strength decrease and leakage of water. Therefore, this study presents in-situ application of the steel pipe jacking with grouting, and it is that jacking and grouting are progressed simultaneously. To verify this, the steel pipe jacking with grouting and the existing steel pipe jacking have been constructed on the same ground condition. It has been proved that the steel pipe jacking with grouting is in-situ applicable according to results of monitoring surface settlement, in-situ density, GPR geophysical prospecting and large scale direct shear test.