• Title/Summary/Keyword: GPR 탐사

Search Result 205, Processing Time 0.025 seconds

Integrated Application of GPR, IE and IR Methods to Detection of the Rear Cavity of Concrete (콘크리트 배면공동 탐지를 위한 GPR, IE 및 IR기법의 복합 적용)

  • Noh, Myung-Gun;Oh, Seok-Hoon;Jang, Bong-Seok
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.338-346
    • /
    • 2009
  • Integrated analysis of GPR, impact echo (IE) and impulse response (IR) was performed to detect the rear cavity of concrete for a test-bed which was made with the same scale and component ratio to the real concrete structure. The test-bed was designed to be capable of observing various response reflecting the existence of iron reinforcing bar and cavity. GPR survey did not clearly resolve the existence of the cavity, although distinguishable responses were observed in the presence of the cavity. In contrast, IE and IR method showed distinct responses, indicating the existence of the cavity. Finally, integrated application of the three methods makes it possible to exactly identify the location of the cavity, although the iron reinforcing bar made a little variation of response.

Application of Radar Survey to a Granite Quarry Mine (화강암 석산 지역에서의 레이다 탐사의 적용)

  • Seol Soon-Jee;Kim Jung-Ho;Cho Seong-Jun;Yi Myeong-Jong;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.1
    • /
    • pp.8-18
    • /
    • 2001
  • To delineate the inhomogeneities including fractures and to estimate the freshness of rock borehole radar consisting of the reflection and tomography methods, and GPR surveys were conducted at a granite quarry mine. The borehole reflection survey using the direction finding antenna was also conducted to get the spatial orientations of reflectors. 20 MHz was adopted as the central frequency for the borehole radar reflection and tomography surveys and 100 MHz was for GPR. Through the interpretation of borehole reflection data using dipole and direction finding antenna as well as GPR images, which are good agreement with each other, we could determine the orientation of the major fractures in three dimensional way. Parts of travel time curves of tomography data showed the anisotropy, which is uncommon in granite quarry. By comparing the tomography data and TeleViewer images, the anisotropy effect in this area are closely related to fine fissures aligned in the same direction. The area confined by the two fractures, MF2 and MF5, might consist of the most fresh granite in the surveyed area, which was concluded from the borehole radar tomography, and GPR images as well as the distribution of anisotropy.

  • PDF

A Study on the Analysis of Positional Accuracy between the GPR Survey Data and Underground Space Integration Map (현장 GPR 탐사자료와 지하공간통합지도 상호위치 정확도 분석에 관한 연구)

  • SONG, Seok-Jin;CHO, Hae-Yong;HAN, Dam-Hye;KIM, Sung-Gil
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.208-216
    • /
    • 2020
  • Recently, issues regarding underground safety such as sink hole, ground subsidence and damage to old underground facilities have been increasing in urban areas, raising the need for more accurate management of underground facilities. Thus, this study derived a technique for comparing spatial data of underground facilities acquired from GPR exploration results acquired at the site with spatial data of integrated underground spatial maps. Using this underground space integrated map-linked service prototype program developed through this study, comparing the location information of the GPR exploration results and the underground space integrated map for the verification of site usability in some sections around Gangnam Station, the results demonstrated that the location of the map is 0.879m maximum, minimum of 0.101m and the average fudge factor was 0.625m. If accuracy of the GPR exploration results is guaranteed, it is judged that it can be used to improve the location accuracy of the underground space integration map.

Improving the Performance of Deep-Learning-Based Ground-Penetrating Radar Cavity Detection Model using Data Augmentation and Ensemble Techniques (데이터 증강 및 앙상블 기법을 이용한 딥러닝 기반 GPR 공동 탐지 모델 성능 향상 연구)

  • Yonguk Choi;Sangjin Seo;Hangilro Jang;Daeung Yoon
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.211-228
    • /
    • 2023
  • Ground-penetrating radar (GPR) surveys are commonly used to monitor embankments, which is a nondestructive geophysical method. The results of GPR surveys can be complex, depending on the situation, and data processing and interpretation are subject to expert experiences, potentially resulting in false detection. Additionally, this process is time-intensive. Consequently, various studies have been undertaken to detect cavities in GPR survey data using deep learning methods. Deep-learning-based approaches require abundant data for training, but GPR field survey data are often scarce due to cost and other factors constaining field studies. Therefore, in this study, a deep- learning-based model was developed for embankment GPR survey cavity detection using data augmentation strategies. A dataset was constructed by collecting survey data over several years from the same embankment. A you look only once (YOLO) model, commonly used in computer vision for object detection, was employed for this purpose. By comparing and analyzing various strategies, the optimal data augmentation approach was determined. After initial model development, a stepwise process was employed, including box clustering, transfer learning, self-ensemble, and model ensemble techniques, to enhance the final model performance. The model performance was evaluated, with the results demonstrating its effectiveness in detecting cavities in embankment GPR survey data.

Application of Electromagnetic and Electrical Survey for Soil Contamination in Land-Fill Area (쓰레기 매립장의 토양오염 조사를 위한 전자탐사 및 전기탐사)

  • Chang Hyun-Sam;Lim Hae-Ryong;Hong Jae-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.2
    • /
    • pp.87-91
    • /
    • 1998
  • Geophysical survey techniques, such as electromagnetic(EM), GPR, and electrical method, have been tested in the landfill area to evaluate the applicability of these methods to soil contamination measurement. The EM method has proven to be excellent on mapping the areal distribution of contaminants and the migration path for leachate. Since the field operation of EM technique is simple as well as fast, we think the EM method must be the first choice for these purposes. Electrical survey techniques have proven to be very effective on mapping sectional distribution of contaminants. Generally, the GPR method is very good on high resolution survey of shallow depth, and field data acquisition is simple, too. But the resistivity method gives better information on deep area, for example, deeper than the depth of 20 m.

  • PDF

Achievements and Tasks of Korea-Japan Geophysical Exploration through Burial mounds Exploration (고분 탐사를 통해 본 한·일 물리탐사의 성과와 과제)

  • Shin, Jong woo
    • Korean Journal of Heritage: History & Science
    • /
    • v.48 no.4
    • /
    • pp.74-93
    • /
    • 2015
  • Geophysical survey of Korea was introduced in Nara National Research Institute of Cultural Heritage in 1995. At that time, it has been activated geophysical survey of architecture and civil engineering in Korea. But there was no exploration experts to be combined the archaeology. For this reason, National Research Institute of Cultural Heritage has introduced the physical exploration. Through the expert exchanges South Korea and Japan carried out joint exploration. And it has increased the reliability of the exploration method and exploration results. It is GPR the most method commonly in geophysical exploration. There are many usability before excavation because of good resolution. However, the shallow GPR penetration depth has limitations in large mounds. We were able to take advantage of the resistivity analysis program to study the underground structure to deep through the experts exchange. We was able to get a good result that overcomes the limitations of GPR exploration in a number of burial mounds including Naju bokamri by the resistivity analysis program. In particular, we confirmed the location of the burial main body by compares the results of exploration and excavation results. In the future we will perform a convergence research of exploration and archaeology through a variety of joint research. In addition we will have to build a new network of archaeological science.

LNAPL Detection with GPR (GPR 탐사방법을 이용한 유류오염물질(LNAPL) 탐지)

  • Kim, Chang-Ryol
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2001.09a
    • /
    • pp.94-103
    • /
    • 2001
  • An experiment was conducted using a sand and gravel-filled tank model, to investigate the influence on the GPR response of vadose zone gasoline vapor phase effects and residual gasoline distributed by a fluctuating water table. After background GPR measurements were made with only water in the tank, gasoline was injected into the bottom of the model tank to simulate a subsurface discharge from a leaking pipe or tank. Results from the experiment show the sensitivity of GPR to the changes in the moisture content and its effectiveness for monitoring minor fluctuation of the water table. The results also demonstrate a potential of GPR for detecting possible vapor phase effects of volatile hydrocarbons in the vadose zone as a function of time, and for detecting the effects of residual phase of hydrocarbons in the water saturated system. In addition, the results provide the basis for a strategy that has the potential to successfully detect and delineate LNAPL contamination at field sites where zones of residual LNAPL in the water saturated system are present in the subsurface.

  • PDF

Cavity Detection of Chamber by GPR (GPR을 이용한 토조의 공동 탐사)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.86-93
    • /
    • 2016
  • To find the buried pipes and cavities, GPR detection were proceed by the type and depth of underground pipes and cavities buried in the Chamber. In the case of asphalt pavement and non-pavement, the exploration of buried pipe were easy than the concrete and reinforced concrete pavement. In the case of air cavity, the buried depth of 1 m was evaluated as the detection was possible.

Survey of underwater deposits using ground penetrating radar (지표레이다 (GPR) 탐사에 의한 하상퇴적물 조사)

  • Chang, Hyun-Sam;Jeong, Seong-Tae
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.163-178
    • /
    • 2002
  • Investigation of underwater sedimentary layers has been carried out with GPR (Ground Penetration Radar) survey. GPR survey has been proved to be very satisfactory since the target area has shallow water depth of about 2.5 m, is lake with no water flow, and the thickness of mud layer, which is a main survey target, is relatively thin. The results clearly showed the underwater sedimentary layers, which includes mud, sand, gravel and basement layer. Specially, the distribution and total amount of mud layers from the survey, which is main target of removal, can be used as a basic data for the dredging of mud layer in the area.

  • PDF

Application of Ground Penetrating Radar for Assessing Riverbed Variation Near Bridge Piers (지하투과레이다를 이용한 교각 주변의 하상변화 조사)

  • Park, In-Chan;Cho, Won-Cheol;Lee, Jong-Kook
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.119-128
    • /
    • 2005
  • The assessment of erosional and depositional patterns near bridge piers is essential to understand the fluvial scour process. Geophysical surveys are particularly effective in determining the riverbed variations in a river and may also be of value for obtaining the previous scour history below the riverbed profile. In this study, GPR (Ground Penetrating Radar), as a non-destructive geophysical technique, was used to assess the existence and depth of existing and infilled scour thickness, streambed materials, and pre- and post- scour surfaces at the bridge piers in Han River, June 2002 and October 2002. The GPR acquisition system used for obtaining profiles of the shallow subsurface deposits was a portable GSSI SIR 2000 system with 100 and 400 MHz antennas. The GPR data obtained along the 24 bridge piers in the flow direction of the river and in the surroundings of 5 bridge piers were compared and presented in this study. It is concluded that GPR surveys can be effective in determining both the water depth and sub-bottom geological structure near the bridge piers and abutments provided that the appropriate instrumentation and operational procedures are applied.