• Title/Summary/Keyword: GPR 영상

Search Result 49, Processing Time 0.023 seconds

Landmine Recognition System using principal component analysis (주성분 분석법을 이용한 지뢰인식 시스템)

  • Yi, Doe-Heon;Shin, Young-Suk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.427-431
    • /
    • 2007
  • 차세대 지뢰탐지 기술로는 NQR(Nuclear Quadrupole Resonance, 핵4중극자공명), GPR(Ground Penetrating Radar, 지상 침투 레이더)등 이 연구 및 개발 중 이다. 현재 우리나라에서도 이중 GPR을 차세대 지뢰탐지 기술로 연구중에 있다. 그렇지만 지금까지 개발된 GPR 기술을 적용한 지뢰탐지기는 얻어진 2차원 영상에 대해서 육안에 의한 식별만이 가능하여 지뢰 식별이 장시간 소요된다는 단점을 가지고 있다. 이에 본 논문에서는 그러한 문제를 해결하기 위해 주성분 분석법을 적용하여 해결하고, 제안된 시스템이 가능한지 확인하기 위해 유사한 실험 환경을 구성하고, 얻어진 영상을 학습시켜 실제로 얻어진 영상에 대한 분류가 가능한지를 확인하였다.

  • PDF

Application of Radar Survey to a Granite Quarry Mine (화강암 석산 지역에서의 레이다 탐사의 적용)

  • Seol Soon-Jee;Kim Jung-Ho;Cho Seong-Jun;Yi Myeong-Jong;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.1
    • /
    • pp.8-18
    • /
    • 2001
  • To delineate the inhomogeneities including fractures and to estimate the freshness of rock borehole radar consisting of the reflection and tomography methods, and GPR surveys were conducted at a granite quarry mine. The borehole reflection survey using the direction finding antenna was also conducted to get the spatial orientations of reflectors. 20 MHz was adopted as the central frequency for the borehole radar reflection and tomography surveys and 100 MHz was for GPR. Through the interpretation of borehole reflection data using dipole and direction finding antenna as well as GPR images, which are good agreement with each other, we could determine the orientation of the major fractures in three dimensional way. Parts of travel time curves of tomography data showed the anisotropy, which is uncommon in granite quarry. By comparing the tomography data and TeleViewer images, the anisotropy effect in this area are closely related to fine fissures aligned in the same direction. The area confined by the two fractures, MF2 and MF5, might consist of the most fresh granite in the surveyed area, which was concluded from the borehole radar tomography, and GPR images as well as the distribution of anisotropy.

  • PDF

A Study of Disposition of Archaeological Remains in Wolseong Fortress of Gyeongju : Using Ground Penetration Radar(GPR) (GPR탐사를 통해 본 경주 월성의 유적 분포 현황 연구)

  • Oh, Hyun Dok;Shin, Jong Woo
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.3
    • /
    • pp.306-333
    • /
    • 2010
  • Previous studies on Wolseong fortress have focused on capital system of Silla Dynasty and on the recreation of Wolseong fortress due to the excavations in and around Wolseong moat. Since the report on the Geographical Survey of Wolseong fortress was published and GPR survey in Wolseong fortress was executed as a trial test in 2004, the academic interest in the site has now expanded to the inside of the fortress. From such context, the preliminary research on the fortress including geophysical survey had been commenced. GPR survey had been conducted for a year from March, 2007. The principal purpose of the recent 3D GPR survey was to provide visualization of subsurface images of the entire Wolseong fortress area. In order to obtain 3D GPR data, dense profile lines were laid in grid-form. The total area surveyed was $112,535m^2$. Depth slice was applied to analyse each level to examine how the layers of the remains had changed and overlapped over time. In addition, slice overlay analysis methodology was used to gather reflects of each depth on a single map. Isolated surface visualization, which is one of 3D analysis methods, was also employed to gain more in-depth understanding and more accurate interpretations of the remain The GPR survey has confirmed that there are building sites whose archaeological features can be classified into 14 different groups. Three interesting areas with huge public building arrangement have been found in Zone 2 in the far west, Zone 9 in the middle, and Zone 14 in the far east. It is recognized that such areas must had been used for important public functions. This research has displayed that 3D GPR survey can be effective for a vast area of archaeological remains and that slice overlay images can provide clearer image with high contrast for objects and remains buried the site.

Application of Image Processing Techniques to GPR Data for the Reliability Improvement in Subsurface Void Analysis (지표레이더(GPR) 탐사자료를 이용한 지하공동 분석 시 신뢰도 향상을 위한 영상처리기법의 활용)

  • Kim, Bona;Seol, Soon Jee;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.2
    • /
    • pp.61-71
    • /
    • 2017
  • Recently, ground-penetrating radar (GPR) surveys have been actively carried out for precise subsurface void investigation because of the rapid increase of subsidence in urban areas. However, since the interpretation of GPR data was conducted based on the interpreter's subjective decision after applying only the basic data processing, it can result in reliability problems. In this research, to solve these problems, we analyzed the difference between the events generated from subsurface voids and those of strong diffraction sources such as the buried pipeline by applying the edge detection technique, which is one of image processing technologies. For the analysis, we applied the image processing technology to the GRP field data containing events generated from the cavity or buried pipeline. As a result, the main events by the subsurface void or diffraction source were effectively separated using the edge detection technique. In addition, since subsurface voids associated with the subsidence has a relatively wide scale, it is recorded as a gentle slope event unlike the event caused by the strong diffraction source recorded with a sharp slope. Therefore, the directional analysis of amplitude variation in the image enabled us to effectively separate the events by the subsurface void from those by the diffraction source. Interpretation based on these kinds of objective analysis can improve the reliability. Moreover, if suggested techniques are verified to various GPR field data sets, these approaches can contribute to semiautomatic interpretation of large amount of GPR data.

Helicopter-borne and ground-towed radar surveys of the Fourcade Glacier on King George Island, Antarctica (남극 킹조지섬 포케이드 빙하의 헬리콥터 및 지상 레이다 탐사)

  • Kim, K.Y.;Lee, J.;Hong, M.H.;Hong, J.K.;Shon, H.
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.51-60
    • /
    • 2010
  • To determine subglacial topography and internal features of the Fourcade Glacier on King George Island in Antarctica, helicopter-borne and ground-towed ground-penetrating radar (GPR) data were recorded along four profiles in November 2006. Signature deconvolution, f-k migration velocity analysis, and finite-difference depth migration applied to the mixed-phase, single-channel, ground-towed data, were effective in increasing vertical resolution, obtaining the velocity function, and yielding clear depth images, respectively. For the helicopter-borne GPR, migration velocities were obtained as root-mean-squared velocities in a two-layer model of air and ice. The radar sections show rugged subglacial topography, englacial sliding surfaces, and localised scattering noise. The maximum depth to the basement is over 79m in the subglacial valley adjacent to the south-eastern slope of the divide ridge between Fourcade and Moczydlowski Glaciers. In the ground-towed profile, we interpret a complicated conduit above possible basal water and other isolated cavities, which are a few metres wide. Near the terminus, the GPR profiles image sliding surfaces, fractures, and faults that will contribute to the tidewater calving mechanism forming icebergs in Potter Cove.

Method to Improve the Location Accuracy of GPR Data for Underground Information Precise Detecting (지하정보 정밀탐사를 위한 GPR 데이터 위치정확도 개선 방안)

  • RYU, Jisong;JANG, Yonggu;PARK, Donghyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.3
    • /
    • pp.32-40
    • /
    • 2021
  • Underground information is difficult to visually check, which can lead to a huge accident in the event of a safety accident. Recently, the Ministry of Land, Infrastructure and Transport intends to reduce safety accidents caused by the aging or damage of underground facilities through the Special Act on Underground Safety Management. GPR is increasingly being used as a technology to acquire information in underground spaces that are difficult to see with the naked eye. However, GPR's location information is corrected by checking images of CCTV and GPS information acquired during exploration. This method has an average error of about 2 meters. In this works, We used LiDAR to calibrate the GPR information and found that the error was reduced from at least 7cm to up to 40cm. If accurate GPR information collected in the future is analyzed quickly using AI, etc., it will be able to collect and utilize underground information faster than it is now to secure safety.

Application of Diffraction Tomography to GPR Data (지표레이다 자료에 대한 회절지오토모그래피의 적용성 연구)

  • Kim Geun-Young;Shin Changsoo;Suh Jung Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.64-70
    • /
    • 1998
  • Diffraction tomography (DT) is a quantitative technique for high resolution subsurface imaging. In general DT algorithm is used for crosswell imaging. In this study high resolution GPR DT algorithm which is able to reconstruct high resolution image of subsurface structures in multi-monostatic geometry is developed. Developed algorithm is applied to finite difference data and its criteria of application and its limit are studied. Inversion parameters (number of imaging frequency, regularization factor, frequency range) are deduced from isolated weak scattering model. And the usuability of the algorithm is proved by applying to models which break the weak scattering approximation.

  • PDF

Analysis of the under Pavement Cavity Growth Rate using Multi-Channel GPR Equipment (멀티채널 GPR 장비를 이용한 도로하부 공동의 크기 변화 분석)

  • Park, Jeong Jun;Kim, In Dae
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.60-69
    • /
    • 2020
  • Purpose: Cavity growth process monitoring is to periodically monitor changes in common size and topography for general and observational grades to predict the rate of common growth. The purpose of this study is to establish a systematic cavity management plan by evaluating the general and observational class community in a non-destructive method. Method: Using GPR exploration equipment, the acquired surface image and the surrounding status image are analyzed in the GPR probe radargram in depth, profile, and cross section of the location. The exact location is selected using the distance and surrounding markings shown on the road surface of the initial detection cavity, and the test cavity is analyzed by calling the radar at the corresponding location. Result: As a result of monitoring tests conducted at a cavity 30 sites of general and observation grade, nine sites have been recovered. Changes in scale were seen in 21 cavity locations, and changes in size and grade occurred in 13 locations. Conclusion: The under road cavity is caused by various causes such as damage to the burial site, poor construction, soil leakage caused by groundwater leakage, waste and ground vibration. Among them, indirect factors could infer the effects of groundwater and localized rainfall.

Evaluate the implementation of Volumetric Modulated Arc Therapy QA in the radiation therapy treatment according to Various factors by using the Portal Dosimetry (용적변조회전 방사선치료에서 Portal Dosimetry를 이용한 선량평가의 재현성 분석)

  • Kim, Se Hyeon;Bae, Sun Myung;Seo, Dong Rin;Kang, Tae Young;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.167-174
    • /
    • 2015
  • Purpose : The pre-treatment QA using Portal dosimetry for Volumetric Arc Therapy To analyze whether maintaining the reproducibility depending on various factors. Materials and Methods : Test was used for TrueBeam STx$^{TM}$ (Ver.1.5, Varian, USA). Varian Eclipse Treatment planning system(TPS) was used for planning with total of seven patients include head and neck cancer, lung cancer, prostate cancer, and cervical cancer was established for a Portal dosimetry QA plan. In order to measure these plans, Portal Dosimetry application (Ver.10) (Varian) and Portal Vision aS1000 Imager was used. Each Points of QA was determined by dividing, before and after morning treatment, and the after afternoon treatment ended (after 4 hours). Calibration of EPID(Dark field correction, Flood field correction, Dose normalization) was implemented before Every QA measure points. MLC initialize was implemented after each QA points and QA was retried. Also before QA measurements, Beam Ouput at the each of QA points was measured using the Water Phantom and Ionization chamber(IBA dosimetry, Germany). Results : The mean values of the Gamma pass rate(GPR, 3%, 3mm) for every patients between morning, afternoon and evening was 97.3%, 96.1%, 95.4% and the patient's showing maximum difference was 95.7%, 94.2% 93.7%. The mean value of GPR before and after EPID calibration were 95.94%, 96.01%. The mean value of Beam Output were 100.45%, 100.46%, 100.59% at each QA points. The mean value of GPR before and after MLC initialization were 95.83%, 96.40%. Conclusion : Maintain the reproducibility of the Portal Dosimetry as a VMAT QA tool required management of the various factors that can affect the dosimetry.

  • PDF

A 3D ground penetrating radar imaging of the heavy rainfall-induced deformation around a river levee: a case study of Ara River, Saitama, Japan (폭우에 의해 발생된 강 제방 주변 변형의 3차원 GPR 영상화: 일본 사이타마현의 아라강에 대한 현장적용사례)

  • Yokota, Toshiyuki;Inazaki, Tomio;Shinagawa, Shunsuke;Ueda, Takumi
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.49-55
    • /
    • 2009
  • This paper describes a three-dimensional ground penetrating radar (GPR) survey carried out around a levee of the Ara River in Saitama, Japan, where deformation of the ground was observed after heavy rainfall associated with the typhoon of September 2007. The high-density 3D GPR survey was conducted as a series of closely adjacent four directional sets of 2D surveys at an area surrounding vertical cracks on the paved road caused by deformations induced by heavy rain. The survey directions of the 2D surveys were 0, 90, 45, and -45 degrees with respect to the paved road and the intervals between lines were less than 0.5 m. The 3D subsurface structure was accurately imaged by the result of data processing using Kirchhoff-type 3D migration. As a result, locations and vertical continuities of the heavy rainfall induced cracks in the paved road were clearly imaged. This will be a great help in considering the generation mechanisms of the cracks. Moreover, the current risk of a secondary disaster was found to be low, as no air-filled cavities were detected by the 3D GPR survey.