• Title/Summary/Keyword: GPGPU(General Purpose Graphics Processing Units)

Search Result 32, Processing Time 0.025 seconds

Implememtation of Fast Rasterizer processing using GPGPU based on SIMT structure (SIMT 구조 기반 GPGPU를 이용한 고속 Rasterizer 구현)

  • Kim, Chiyong
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.276-279
    • /
    • 2017
  • In this paper, SIMT structure based GPGPU (General Purpose Computing on Graphics Processing Units) is used for accelerating the Rasterizer which constitutes the screen of the display device in pixel unit. The GPU has a large number of ALUs, and the processing is very fast because of parallel processing. Therefore, in this paper, we implemented a rasterizer that generates a 3D graphics model using a CPU that performs operations sequentially and a GPU that performs operations in parallel. We confirmed that proposed rasterizer in this paper is 1.45 times better than rasterizer using Intel CPU when generating one frame.

Performance Comparison of Join Operations Parallelization by using GPGPU (GPGPU 기반 조인 연산 병렬화 성능 비교)

  • Lee, Jong-Sub;Lee, Sang-Back;Lee, Kyu-Chul
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.28-44
    • /
    • 2018
  • In a database system, the most expensive operation among relational operations is a join operation. Generally, CPU-based join operations uses parallel processing with either 1 core or 16 cores at most, which does not significantly improve the function. On the other hand, GPGPU(General-Purpose computing on Graphics Processing Units) allows parallel processing through thousands of processing units, greatly reducing the time required to perform join operations. Parallelization of the operation using GPGPU uses NVIDIA's CUDA SDK. In this paper, we implement parallelization of the join operation using GPGPU and compare the performances. The used join operations are Nested Loop Join (NLJ), Sort Merge Join (SMJ) and Hash Join (HJ), and GPGPU equipment uses TITAN Xp, GTX 1080 Ti and GTX 1080. We measure and compare the performance of join operations based on CPU and GPGPU. We compare this performance with the performance of the previous study on the join operation based on GPGPU. The results of experiment show that the performance based on GPGPU is 6~328 times faster than the one based on CPU.

Analysis on Memory Characteristics of Graphics Processing Units for Designing Memory System of General-Purpose Computing on Graphics Processing Units (범용 그래픽 처리 장치의 메모리 설계를 위한 그래픽 처리 장치의 메모리 특성 분석)

  • Choi, Hongjun;Kim, Cheolhong
    • Smart Media Journal
    • /
    • v.3 no.1
    • /
    • pp.33-38
    • /
    • 2014
  • Even though the performance of microprocessor is improved continuously, the performance improvement of computing system becomes hard to increase, in order to some drawbacks including increased power consumption. To solve the problem, general-purpose computing on graphics processing units(GPGPUs), which execute general-purpose applications by using specialized parallel-processing device representing graphics processing units(GPUs), have been focused. However, the characteristics of applications related with graphics is substantially different from the characteristics of general-purpose applications. Therefore, GPUs cannot exploit the outstanding computational resources sufficiently due to various constraints, when they execute general-purpose applications. When designing GPUs for GPGPU, memory system is important to effectively exploit the GPUs since typically general-purpose applications requires more memory accesses than graphics applications. Especially, external memory access requiring long latency impose a big overhead on the performance of GPUs. Therefore, the GPU performance must be improved if hierarchical memory architecture which can reduce the number of external memory access is applied. For this reason, we will investigate the analysis of GPU performance according to hierarchical cache architectures in executing various benchmarks.

GPGPU Task Management Technique to Mitigate Performance Degradation of Virtual Machines due to GPU Operation in Cloud Environments (클라우드 환경에서 GPU 연산으로 인한 가상머신의 성능 저하를 완화하는 GPGPU 작업 관리 기법)

  • Kang, Jihun;Gil, Joon-Min
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.9
    • /
    • pp.189-196
    • /
    • 2020
  • Recently, GPU cloud computing technology applying GPU(Graphics Processing Unit) devices to virtual machines is widely used in the cloud environment. In a cloud environment, GPU devices assigned to virtual machines can perform operations faster than CPUs through massively parallel processing, which can provide many benefits when operating high-performance computing services in a variety of fields in a cloud environment. In a cloud environment, a GPU device can help improve the performance of a virtual machine, but the virtual machine scheduler, which is based on the CPU usage time of a virtual machine, does not take into account GPU device usage time, affecting the performance of other virtual machines. In this paper, we test and analyze the performance degradation of other virtual machines due to the virtual machine that performs GPGPU(General-Purpose computing on Graphics Processing Units) task in the direct path based GPU virtualization environment, which is often used when assigning GPUs to virtual machines in cloud environments. Then to solve this problem, we propose a GPGPU task management method for a virtual machine.

Performance Improvement of Web Service Based on GPGPU and Task Queue

  • Kim, Changsu;Kim, Kyunghwan;Jung, Hoekyung
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.257-262
    • /
    • 2021
  • Providing web services to users has become expensive in recent times. For better web services, a web server is provided with high-performance technology. To achieve great web service experiences, tools such as general-purpose graphics processing units (GPGPUs), artificial intelligence, high-performance computing, and three-dimensional simulation are widely used. However, graphics processing units (GPUs) are used in high-speed operations and have limited general applications. In this study, we developed a task queue in a GPU to improve the performance of a web service using a multiprocessor and studied how to receive and process user requests in bulk. We propose the use of a GPGPU-based task queue to process user requests more than GPGPU based a central processing unit thread, and to process more GPU threads on task queue at about 136% to 233%, and proved that the proposed method is effective for web service.

Implementation of IQ/IDCT in H.264/AVC Decoder Using Mobile Multi-Core GPGPU (모바일 멀티 코어 GP-GPU를 이용한 H.264/AVC 디코더 구현)

  • Kim, Dong-Han;Lee, Kwang-Yeob;Jeong, Jun-Mo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.321-324
    • /
    • 2010
  • There have been lots of researches on a multi-core processor. The enhancement has been performed through parallelization method. Multi-core architecture in the mobile environment has emerged. But, there is a limit to a mobile CPU's performance. GP-GPU(General-Purpose computing on Graphics Processing Units) can improve performance without adding other dedicated hardware. This paper presents the implementation of Inverse Quantization, Inverse DCT and Color Space Conversion module in H.264/AVC decoder using Multi-Core GP-GPU for a mobile environments. The proposed architecture improves approximately 50% of performance when it use all the features.

  • PDF

Research of accelerating method of video quality measurement program using GPGPU (GPGPU를 이용한 영상 품질 측정 프로그램의 가속화 연구)

  • Lee, Seonguk;Byeon, Gibeom;Kim, Kisu;Hong, Jiman
    • Smart Media Journal
    • /
    • v.5 no.4
    • /
    • pp.69-74
    • /
    • 2016
  • Recently, parallel computing using GPGPU(General-Purpose computing on Graphics Processing Units) according to the development of the graphics processing unit is expanding. This can be achieved through the processing speeds faster than traditional computing environments across many fields, including science, medicine, engineering, and analysis. However, in using the GPU technology to implement the a parallel program there are many constraints. In this paper, we port a CPU-based program(Video Quality Measurement Program) to use technology. The program ported to GPU-based show about 1.83 times the execution speed than CPU-based program. We study on the acceleration of the GPU-based program. Also we discuss the technical constraints and problems that occur when you modify the CPU to the GPU-based programs.

Study of Cache Performance on GPGPU

  • Choi, Kyu Hyun;Kim, Seon Wook
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.78-82
    • /
    • 2015
  • General-purpose graphics processing units (GPGPUs) provide tremendous computational and processing power. Despite the latency hiding mechanism, a GPU architecture requires high memory bandwidth and lower latency between computational units and the memory system. For this reason, the current GPU architecture has private L1 caches in each core and a shared L2 cache to increase performance by reducing memory latency. But in some cases, this CPU-like cache design is not suitable for GPGPUs. In this paper, we analyze detailed cache performance related to GPGPU application characteristics, and suggest technical alternatives for the GPGPU architecture as future work.

Efficient Thread Allocation Method of Convolutional Neural Network based on GPGPU (GPGPU 기반 Convolutional Neural Network의 효율적인 스레드 할당 기법)

  • Kim, Mincheol;Lee, Kwangyeob
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.10
    • /
    • pp.935-943
    • /
    • 2017
  • CNN (Convolution neural network), which is used for image classification and speech recognition among neural networks learning based on positive data, has been continuously developed to have a high performance structure to date. There are many difficulties to utilize in an embedded system with limited resources. Therefore, we use GPU (General-Purpose Computing on Graphics Processing Units), which is used for general-purpose operation of GPU to solve the problem because we use pre-learned weights but there are still limitations. Since CNN performs simple and iterative operations, the computation speed varies greatly depending on the thread allocation and utilization method in the Single Instruction Multiple Thread (SIMT) based GPGPU. To solve this problem, there is a thread that needs to be relaxed when performing Convolution and Pooling operations with threads. The remaining threads have increased the operation speed by using the method used in the following feature maps and kernel calculations.

Implementation of IQ/IDCT in H.264/AVC Decoder Using GPGPU (GPGPU를 이용한 H.264/AVC 디코더)

  • Kim, Dong-Han;Lee, Kwang-Yeob
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.162-164
    • /
    • 2010
  • H.264/AVC(Advanced Video Coding) is a standard for video compression. H.264/AVC provides good video quality at substantially lower bit rates than previous standards. In this papers, we propose the efficient architecture of H.264/AVC decoder using GPGPU. GPGPU can process many of operation in parallel. IQ/IDCT is possible that parallel processing in H.264/AVC decoding algorithm.

  • PDF