• Title/Summary/Keyword: GOCI영상

Search Result 62, Processing Time 0.021 seconds

Performance Evaluation of Monitoring System for Sargassum horneri Using GOCI-II: Focusing on the Results of Removing False Detection in the Yellow Sea and East China Sea (GOCI-II 기반 괭생이모자반 모니터링 시스템 성능 평가: 황해 및 동중국해 해역 오탐지 제거 결과를 중심으로)

  • Han-bit Lee;Ju-Eun Kim;Moon-Seon Kim;Dong-Su Kim;Seung-Hwan Min;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1615-1633
    • /
    • 2023
  • Sargassum horneri is one of the floating algae in the sea, which breeds in large quantities in the Yellow Sea and East China Sea and then flows into the coast of Republic of Korea, causing various problems such as destroying the environment and damaging fish farms. In order to effectively prevent damage and preserve the coastal environment, the development of Sargassum horneri detection algorithms using satellite-based remote sensing technology has been actively developed. However, incorrect detection information causes an increase in the moving distance of ships collecting Sargassum horneri and confusion in the response of related local governments or institutions,so it is very important to minimize false detections when producing Sargassum horneri spatial information. This study applied technology to automatically remove false detection results using the GOCI-II-based Sargassum horneri detection algorithm of the National Ocean Satellite Center (NOSC) of the Korea Hydrographic and Oceanography Agency (KHOA). Based on the results of analyzing the causes of major false detection results, it includes a process of removing linear and sporadic false detections and green algae that occurs in large quantities along the coast of China in spring and summer by considering them as false detections. The technology to automatically remove false detection was applied to the dates when Sargassum horneri occurred from February 24 to June 25, 2022. Visual assessment results were generated using mid-resolution satellite images, qualitative and quantitative evaluations were performed. Linear false detection results were completely removed, and most of the sporadic and green algae false detection results that affected the distribution were removed. Even after the automatic false detection removal process, it was possible to confirm the distribution area of Sargassum horneri compared to the visual assessment results, and the accuracy and precision calculated using the binary classification model averaged 97.73% and 95.4%, respectively. Recall value was very low at 29.03%, which is presumed to be due to the effect of Sargassum horneri movement due to the observation time discrepancy between GOCI-II and mid-resolution satellite images, differences in spatial resolution, location deviation by orthocorrection, and cloud masking. The results of this study's removal of false detections of Sargassum horneri can determine the spatial distribution status in near real-time, but there are limitations in accurately estimating biomass. Therefore, continuous research on upgrading the Sargassum horneri monitoring system must be conducted to use it as data for establishing future Sargassum horneri response plans.

A Study on the Retrievals of Downward Solar Radiation at the Surface based on the Observations from Multiple Geostationary Satellites (정지궤도 위성자료를 이용한 지표면 도달 태양복사량 연구)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.123-135
    • /
    • 2013
  • The reflectance observed in the visible channels of a geostationary meteorological satellite can be used to calculate the amount of cloud by comparing the reflectance with the observed solar radiation data at the ground. Using this, the solar radiation arriving at the surface can be estimated. This study used the Meteorological Imager (MI) reflectance observed at a wavelength of 675 nm and the Geostationary Ocean Color Imager (GOCI) reflectance observed at similar wavelengths of 660 and 680 nm. Cloudy days during a typhoon and sunny days with little cloud cover were compared using observation data from the geostationary satellite. Pixels that had more than 40% reflectance in the satellite images showed less than 0.3 of the cloud index and blocked more than 70% of the solar energy. Pixels that showed less than 15% reflectance showed more than 0.9 of the cloud index and let through more than 90% of the solar energy to the surface. The calculated daily accumulated solar radiation was compared with the observed daily accumulated solar radiation in 22 observatories of the Korean Meteorological Administration. The values calculated for the COMS and MTSAT MI sensors were smaller than the observation and showed low correlations of 0.94 and 0.93, respectively, which were smaller than the 0.96 correlation coefficient calculated for the GOCI sensor. The RMSEs of MTSAT, COMS MI and GOCI calculation results showed 2.21, 2.09, 2.02 MJ/$m^2$ in order. Comparison of the calculated daily accumulated results from the GOCI sensor with the observed data on the ground gave correlations and RMSEs for cloudy and sunny days of 0.96 and 0.86, and 1.82 MJ/$m^2$ and 2.27 MJ/$m^2$, respectively, indicating a slightly higher correlation for cloudy days. Compared to the meteorological imager, the geostationary ocean color imager in the COMS satellite has limited observation time and observation is not continuous. However, it has the advantage of providing high resolution so that it too can be useful for solar energy analysis.

Sea Fog Detection Algorithm Using Visible and Near Infrared Bands (가시 밴드와 근적외 밴드를 이용한 해무 탐지 알고리즘)

  • Lee, Kyung-Hun;Kwon, Byung-Hyuk;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.3
    • /
    • pp.669-676
    • /
    • 2018
  • The Geostationary Ocean Color Imager(: GOCI) detects the sea fog at a high horizontal resolution of $500m{\times}500m$ using the Rayleigh corrected reflectance of 8 bands. The visible and the near infrared waves strongly reflect the characteristics of the earth surface, causing errors in cloud and fog detection. A threshold of the Band7 reflectance was set to detect the sea fog entering the land. When the region on which Band4 reflectance is larger than Band8 is determinated as cloud, the error over-estimated as sea fog is corrected by comparing the average reflectance with the surrounding region. The improved algorithm has been verified by comparing the fog images of the Cheollian satellite (COMS: Communication, Ocean, and Meteorological Satellite) as well as the visibility data from the Korea Meteorological Administration.

Development of the diffuse attenuation coefficient for down-welling irradiance ($K_d$) algorithm around the Korean Sea (우리나라 해역 특성에 맞는 수중에서의 하향 방향의 감쇠계수 알고리즘 ($K_d$ algorithm) 개발)

  • Min, Jee-Eun;Ryu, Joo-Hyung;Ahn, Yu-Hwan;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.204-209
    • /
    • 2007
  • 수중에서의 하향 방향의 감쇠 계수 (Diffuse attenuation coefficient of down-welling irradiance, $K_d$)에 대한 연구는 상충 해양에 대한 열전달 수중에서의 광합성 및 다른 생물학적 과정에 대한 연구,해양 일차 생산력 추정, 대양 및 연안에서의 탁도 추정 등에 대한 연구의 보조 자료로서 해양원격탐사를 포함한 해양에 대한 연구에 매우 중요한 요소이다. 우리나라는 세계 최초의 정지궤도 해색 센서인 Geostationary Ocean Color Imager (GOCI)를 2008년 말에 통신해양기상위성 (COMS, Communication Ocean and Meteorological Satellite)에 탑재하여 쏘아 올릴 계획에 있다. 이 센서는 매일 한 시간 간격으로 한반도 주변 해역을 8회 이상 관측할 계획에 었다. 따라서 기존의 해색 센서들에 비해서 시간 해상도가 향상되기 때문에 해양 환경 모니터링에 있어서 많은 도움이 될 것으로 예상된다. 본 연구에서는 앞으로 운영될 GOCI 센서에 대한 수중에서의 하향 방향의 감쇠계수 (The diffuse attenuation coefficient of down-welling irradiance, $K_d$) 알고리즘을 현장 관측 값을 이용하여 미리 만들어 보고 이를 현재의 대표적인 해색 센서인 SeaWiFS 영상의$K_d$(490) product와 비교하여 보았다.

  • PDF

Spatial Downscaling of Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index Using GOCI Satellite Image and Machine Learning Technique (GOCI 위성영상과 기계학습 기법을 이용한 Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index의 공간 상세화)

  • Sung, Taejun;Kim, Young Jun;Choi, Hyunyoung;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.959-974
    • /
    • 2021
  • Forel-Ule Index (FUI) is an index which classifies the colors of inland and seawater exist in nature into 21 gradesranging from indigo blue to cola brown. FUI has been analyzed in connection with the eutrophication, water quality, and light characteristics of water systems in many studies, and the possibility as a new water quality index which simultaneously contains optical information of water quality parameters has been suggested. In thisstudy, Ocean Colour-Climate Change Initiative (OC-CCI) based 4 km FUI was spatially downscaled to the resolution of 500 m using the Geostationary Ocean Color Imager (GOCI) data and Random Forest (RF) machine learning. Then, the RF-derived FUI was examined in terms of its correlation with various water quality parameters measured in coastal areas and its spatial distribution and seasonal characteristics. The results showed that the RF-derived FUI resulted in higher accuracy (Coefficient of Determination (R2)=0.81, Root Mean Square Error (RMSE)=0.7784) than GOCI-derived FUI estimated by Pitarch's OC-CCI FUI algorithm (R2=0.72, RMSE=0.9708). RF-derived FUI showed a high correlation with five water quality parameters including Total Nitrogen, Total Phosphorus, Chlorophyll-a, Total Suspended Solids, Transparency with the correlation coefficients of 0.87, 0.88, 0.97, 0.65, and -0.98, respectively. The temporal pattern of the RF-derived FUI well reflected the physical relationship with various water quality parameters with a strong seasonality. The research findingssuggested the potential of the high resolution FUI in coastal water quality management in the Korean Peninsula.

Estimation of High Resolution Sea Surface Salinity Using Multi Satellite Data and Machine Learning (다종 위성자료와 기계학습을 이용한 고해상도 표층 염분 추정)

  • Sung, Taejun;Sim, Seongmun;Jang, Eunna;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.747-763
    • /
    • 2022
  • Ocean salinity affects ocean circulation on a global scale and low salinity water around coastal areas often has an impact on aquaculture and fisheries. Microwave satellite sensors (e.g., Soil Moisture Active Passive [SMAP]) have provided sea surface salinity (SSS) based on the dielectric characteristics of water associated with SSS and sea surface temperature (SST). In this study, a Light Gradient Boosting Machine (LGBM)-based model for generating high resolution SSS from Geostationary Ocean Color Imager (GOCI) data was proposed, having machine learning-based improved SMAP SSS by Jang et al. (2022) as reference data (SMAP SSS (Jang)). Three schemes with different input variables were tested, and scheme 3 with all variables including Multi-scale Ultra-high Resolution SST yielded the best performance (coefficient of determination = 0.60, root mean square error = 0.91 psu). The proposed LGBM-based GOCI SSS had a similar spatiotemporal pattern with SMAP SSS (Jang), with much higher spatial resolution even in coastal areas, where SMAP SSS (Jang) was not available. In addition, when tested for the great flood occurred in Southern China in August 2020, GOCI SSS well simulated the spatial and temporal change of Changjiang Diluted Water. This research provided a potential that optical satellite data can be used to generate high resolution SSS associated with the improved microwave-based SSS especially in coastal areas.

Application of Multi-satellite Sensors to Estimate the Green-tide Area (황해 부유 녹조 면적 산출을 위한 멀티 위성센서 활용)

  • Kim, Keunyong;Shin, Jisun;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.339-349
    • /
    • 2018
  • The massive green tide occurred every summer in the Yellow Sea since 2008, and many studies are being actively conducted to estimate the coverage of green tide through analysis of satellite imagery. However, there is no satellite images selection criterion for accurate coverage calculation of green tide. Therefore, this study aimed to find a suitable satellite image from for the comparison of the green tide coverage according to the spatial resolution of satellite image. In this study, Landsat ETM+, MODIS and GOCI images were used to coverage estimation and its spatial resolution is 30, 250 and 500 m, respectively. Green tide pixels were classified based on the NDVI algorithm, the difference of the green tide coverage was compared with threshold value. In addition, we estimate the proportion of the green tide in one pixel through the Linear Spectral Unmixing (LSU) method, and the effect of the difference of green tide ratio on the coverage calculation were evaluated. The result of green tide coverage from the calculation of the NDVI value, coverage of green tide usually overestimate with decreasing spatial resolution, maximum difference shows 1.5 times. In addition, most of the pixels were included in the group with less than 0.1 (10%) LSU value, and above 0.5 (50%) LSU value accounted for about 2% in all of three images. Even though classified as green tide from the NDVI result, it is considered to be overestimated because it is regarded as the same coverage even if green tide is not 100% filled in one pixel. Mixed-pixel problem seems to be more severe with spatial resolution decreases.

Backup Site Operation Of COMS Image Data Acquisition And Control System (천리안위성 영상 수신 및 처리에 대한 백업 지상국 운영)

  • Cho, Young-Min;Kwon, Eun Joo
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.95-101
    • /
    • 2015
  • The backup site operation of the Image Data Acquisition and Control System (IDACS) for Communication Ocean Meteorological Satellite (COMS) is discussed in terms of the ground station configuration, image data processing, and the characteristics of backup activities for both the meteorological image data and the ocean image data. The well-performed backup operation of the COMS IDACS is also confirmed with the first three years normal operation results from April, 2011 to March, 2014. The operation results are analyzed through statistical approach to provide the achieved operational performance of the image data reception, preprocessing, and broadcast.

Introduction and Evaluation of the Production Method for Chlorophyll-a Using Merging of GOCI-II and Polar Orbit Satellite Data (GOCI-II 및 극궤도 위성 자료를 병합한 Chlorophyll-a 산출물 생산방법 소개 및 활용 가능성 평가)

  • Hye-Kyeong Shin;Jae Yeop Kwon;Pyeong Joong Kim;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1255-1272
    • /
    • 2023
  • Satellite-based chlorophyll-a concentration, produced as a long-term time series, is crucial for global climate change research. The production of data without gaps through the merging of time-synthesized or multi-satellite data is essential. However, studies related to satellite-based chlorophyll-a concentration in the waters around the Korean Peninsula have mainly focused on evaluating seasonal characteristics or proposing algorithms suitable for research areas using a single ocean color sensor. In this study, a merging dataset of remote sensing reflectance from the geostationary sensor GOCI-II and polar-orbiting sensors (MODIS, VIIRS, OLCI) was utilized to achieve high spatial coverage of chlorophyll-a concentration in the waters around the Korean Peninsula. The spatial coverage in the results of this study increased by approximately 30% compared to polar-orbiting sensor data, effectively compensating for gaps caused by clouds. Additionally, we aimed to quantitatively assess accuracy through comparison with global chlorophyll-a composite data provided by Ocean Colour Climate Change Initiative (OC-CCI) and GlobColour, along with in-situ observation data. However, due to the limited number of in-situ observation data, we could not provide statistically significant results. Nevertheless, we observed a tendency for underestimation compared to global data. Furthermore, for the evaluation of practical applications in response to marine disasters such as red tides, we qualitatively compared our results with a case of a red tide in the East Sea in 2013. The results showed similarities to OC-CCI rather than standalone geostationary sensor results. Through this study, we plan to use the generated data for future research in artificial intelligence models for prediction and anomaly utilization. It is anticipated that the results will be beneficial for monitoring chlorophyll-a events in the coastal waters around Korea.

Moon Imaging for the Calibration of the COMS Meteorological Imager (천리안 위성의 기상탑재체 보정을 위한 달 영상 획득 방안)

  • Park, Bong-Kyu;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.44-50
    • /
    • 2010
  • COMS accommodates multiple payloads; Meteorological Image(MI), Ocean Color Imager(GOCI) and Ka-band communication payloads. In order to improve the quality of MI visible channel, the moon image has been taken into account as backup reference in addition to Albedo monitoring. However, obtaining the moon image by adding special mission schedule is not recommended after IOT, because we may miss chances to obtain meteorological images during the time slots for special imaging. As an alternative solution, an approach extracting moon image from MI FD(Full Disk) image has been proposed when the moon is positioned near to the earth. However, prediction of acquisition time of moon image is somewhat difficult as the moon moves while the MI is scanning type sensor. And the moon can not be seen when it is behind the earth or outside of FD field of view. This paper discusses how effectively the moon can be detected by the MI FD imaging. For that purpose, this paper describes an approach taken to predict the time when the moon image is achievable and then introduces the results obtained from computer simulation.