• 제목/요약/키워드: GO nanoparticles

검색결과 57건 처리시간 0.032초

Preparation and Performance Evaluation of a Zinc Oxide-Graphene Oxideloaded Chitosan-Based Thermosensitive Gel

  • Hao Huang;Rui Han;Ping-Ping Huang;Chuan-Yue Qiao;Shuang Bian;Han Xiao;Lei Ma
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권6호
    • /
    • pp.1229-1238
    • /
    • 2024
  • This study aimed to develop and assess a chitosan biomedical antibacterial gel ZincOxide-GrapheneOxide/Chitosan/β-Glycerophosphate (ZnO-GO/CS/β-GP) loaded with nano-zinc oxide (ZnO) and graphene oxide (GO), known for its potent antibacterial properties, biocompatibility, and sustained drug release. ZnO nanoparticles (ZnO-NPs) were modified and integrated with GO sheets to create 1% and 3% ZnO-GO/CS/β-GP thermo-sensitive hydrogels based on ZnO-GO to Chitosan (CS) mass ratio. Gelation time, pH, structural changes, and microscopic morphology were evaluated. The hydrogel's antibacterial efficacy against Porphyromonas gingivalis, biofilm biomass, and metabolic activity was examined alongside its impact (MC3T3-e1). The findings of this study revealed that both hydrogel formulations exhibited temperature sensitivity, maintaining a neutral pH. The ZnO-GO/CS/β-GP formulation effectively inhibited P. gingivalis bacterial activity and biofilm formation, with a 3% ZnO-GO/CS/β-GP antibacterial rate approaching 100%. MC3T3-e1 cells displayed good biocompatibility when cultured in the hydrogel extract.The ZnO-GO/CS/β-GP thermo-sensitive hydrogel demonstrates favorable physical and chemical properties, effectively preventing P. gingivalis biofilm formation. It exhibits promising biocompatibility, suggesting its potential as an adjuvant therapy for managing and preventing peri-implantitis, subject to further clinical investigations.

Synthesis of Graphene Oxide Based CuOx Nanocomposites and Application for C-N Cross Coupling Reaction

  • Choi, Jong Hoon;Park, Joon B.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.176.1-176.1
    • /
    • 2014
  • Graphene has attracted an increasing attention due to its extraordinary electronic, mechanical, and thermal properties. Especially, the two dimensional (2D) sheet of graphene with an extremely high surface to volume ratio has a great potential in the preparation of multifunctional nanomaterials, as 2D supports to host metal nanoparticles (NPs). Copper oxide is widely used in various areas as antifouling paint, p-type semiconductor, dry cell batteries, and catalysts. Although the copper oxide(II) has been well known for efficient catalyst in C-N cross-coupling reaction, copper oxide(I) has not been highlighted. In this research, CuO and Cu2O nanoparticles (NPs) dispersed on the surface of grapehene oxide (GO) have been synthesized by impregnation method and their morphological and electronic structures have been systemically investigated using TEM, XRD, and XAFS. We demonstrate that both CuO and Cu2O on graphene presents efficient catalytic performance toward C-N cross coupling reaction. The detailed structural difference between CuO and Cu2O NPs and their effect on catalytic performance are discussed.

  • PDF

Enhancement of Efficiency for Polymerase Chain Reaction Using Nanoparticle-Coated Graphene Oxide

  • 주민영;백승훈;김은주;;박찬영;박태정
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.375.1-375.1
    • /
    • 2016
  • Polymerase chain reaction (PCR) has revolutionized genetics and become one of the most popular techniques in modern biological and medical sciences. It can be used not only as an in vitro DNA amplification method but also used in many bioassay applications. The PCR can be used to exponentially produce a large number of DNA copies from a small quantity of DNA molecules in a few hours. However, as unwanted DNA fragments are also often manufactured, the amplification efficiency of PCR is decreased. To overcome this limitation, several nanomaterials have been employed to increase the specificity of the PCR reaction. Recently, graphene has attracted a great interest for its excellent electron transfer, thermal and biocompatibility. Especially, gold nanoparticle-coated graphene oxide (GO/AuNPs) led to enhance electron and thermal transfer rate and low-charge transfer resistance. Therefore, we report the development of a demonstration for the PCR efficiency using a large-scale production of the GO and combination of gold nanoparticles. Because a thermal conductivity is an important factor for improving the PCR efficiency in different DNA polymerases and different size samples. When PCR use GO/AuNPs, the result of transmission electron microscopy and real-time quantitative PCR (qPCR) showed an enhanced PCR efficiency. We have demonstrated that GO/AuNPs would be simply outperformed for enhancing the specificity and efficiency of DNA amplification procedure.

  • PDF

Resistive Switching Memory Devices Based on Layer-by-Layer Assembled-Superparamagnetic Nanocomposite Multilayers via Nucleophilic Substitution Reaction in Nonpolar Solvent

  • 김영훈;고용민;구본기;조진한
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.243.1-243.1
    • /
    • 2011
  • We demonstrate a facile and robust layer-by-layer (LbL) assembly method for the fabrication of nonvolatile resistive switching memory (NRSM) devices based on superparamagnetic nanocomposite multilayers, which allows the highly enhanced magnetic and resistive switching memory properties as well as the dense and homogeneous adsorption of nanoparticles, via nucleophilic substitution reaction (NSR) in nonpolar solvent. Superparamagnetic iron oxide nanoparticles (MP) of about size 12 nm (or 7 nm) synthesized with oleic acid (OA) in nonpolar solvent could be converted into 2-bromo-2-methylpropionic acid (BMPA)-stabilized iron oxide nanoparticles (BMPA-MP) by stabilizer exchange without change of solvent polarity. In addition, bromo groups of BMPA-MP could be connected with highly branched amine groups of poly (amidoamine) dendrimer (PAMA) in ethanol by NSR of between bromo and amine groups. Based on these results, nanocomposite multilayers using LbL assembly could be fabricated in nonpolar solvent by NSR of between BMPA-MP and PAMA without any additional phase transfer of MP for conventional LbL assembly. These resulting superparamagnetic multilayers displayed highly improved magnetic and resistive switching memory properties in comparison with those of multilayers based on water-dispersible MP. Furthermore, NRSM devices, which were fabricated by LbL assembly method under atmospheric conditions, exhibited the outstanding performances such as long-term stability, fast switching speed and high ON/OFF ratio comparable to that of conventional inorganic NRSM devices produced by vacuum deposition.

  • PDF

Control of Airborne Organic Pollutants Using Plug-Flow Reactor Coated With Carbon Material-Titania Mixtures Under Visible-Light Irradiation

  • Jo, Wan-Kuen;Kang, Hyun-Jung;Kim, Mo-Keun
    • 한국환경과학회지
    • /
    • 제22권10호
    • /
    • pp.1263-1271
    • /
    • 2013
  • Graphene oxide (GO)-titania composites have emerged as an attractive heterogeneous photocatalyst that can enhance the photocatalytic activity of $TiO_2$ nanoparticles owing to their potential interaction of electronic and adsorption natures. Accordingly, $TiO_2$-GO mixtures were synthesized in this study using a simple chemical mixing process, and their heterogeneous photocatalytic activities were investigated to determine the degradation of airborne organic pollutants (benzene, ethyl benzene, and o-xylene (BEX)) under different operational conditions. The Fourier transform infrared spectroscopy results demonstrated the presence of GO for the $TiO_2$-GO composites. The average efficiencies of the $TiO_2$-GO mixtures for the decomposition of each component of BEX determined during the 3-h photocatalytic processes were 26%, 92%, and 96%, respectively, whereas the average efficiencies of the unmodified $TiO_2$ powder were 3%, 8%, and 10%, respectively. Furthermore, the degradation efficiency of the unmodified $TiO_2$ powder for all target compounds decreased during the 3-h photocatalytic processes, suggesting a potential deactivation even during such a short time period. Two operational conditions (air flow entering into the air-cleaning devices and the indoor pollution levels) were found to be important factors for the photocatalytic decomposition of BEX molecules. Taken together, these results show that a $TiO_2$-GO mixture can be applied effectively for the purification of airborne organic pollutants when the operating conditions are optimized.

슈퍼커패시터용 그래핀볼 - 그래핀옥사이드 복합전극의 전기화학적 특성 (Electrochemical Property of the Composite Electrode with Graphene Balls and Graphene Oxide for Supercapacitor)

  • 정우준;오예찬;김상호
    • 한국표면공학회지
    • /
    • 제53권5호
    • /
    • pp.213-218
    • /
    • 2020
  • Composite material of the graphene ball (GB) inserted graphene oxide (GO) sheet for a supercapacitor electrode was studied. Chemical vapor deposition (CVD) process used to make GBs on the silicon oxide nanoparticles. The GBs mixed into the GO sheets to make GOGB and reduced it to create a reduced GOGB(RGOGB) composite. The RGOGB composite electrode had a large surface area and improved electrochemical properties. Specific capacitance of the RGBGO composite electrode was higher over 20 times than a pure GO and GOGB electrode in cyclic voltammetry(CV) tests, and the Z' and Z" impedance measured by an electrochemical impedance spectrometry(EIS) also low. So, the RGBGO composite electrode would use effectively to expand a performance of supercapacitor.

코어-쉘 구조의 산화철/그래핀 복합체 제조 및 슈퍼커패시터 응용 (Preparation of Core-Shell Structured Iron Oxide/Graphene Composites for Supercapacitors Application)

  • 이총민;장한권;장희동
    • 한국입자에어로졸학회지
    • /
    • 제14권3호
    • /
    • pp.65-72
    • /
    • 2018
  • Core-shell structured $Fe_3O_4/graphene$ composites were synthesized by aerosol spray drying process from a colloidal mixture of graphene oxides and $Fe_3O_4$ nanoparticles. The structural and electrochemical performance of $Fe_3O_4/graphene$ were characterized by the field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, cyclic voltammetry, and galvanometric discharge-charge method. Core-shell structured $Fe_3O_4/GR$ composites were synthesized in different mass ratios of $Fe_3O_4$ and graphene oxide. The composite particles were around $3{\mu}m$ in size. $Fe_3O_4$ nanoparticles were encapsulated with a graphene. Morphology of the $Fe_3O_4/graphene$ composite particles changed from a spherical ball having a relatively smooth surface to a porous crumpled paper ball as the content of GO increased in the composites. The $Fe_3O_4/GR$ composite fabricated at the weight ratio of 1:4 ($Fe_3O_4:GO$) exhibited higher specific capacitance($203F\;g^{-1}$) and electrical conductivity than as-fabricated $Fe_3O_4/GR$ composite.

에어로졸 공정에 의한 Graphene-$TiO_2$ 복합체 제조 및 염료감응 태양전지 특성평가 (Preparation of graphene-$TiO_2$ composite by aerosol process and it's characterization for dye-sensitized solar cell)

  • 조은희;김선경;장희동;장한권;노기민;김태오
    • 한국입자에어로졸학회지
    • /
    • 제9권2호
    • /
    • pp.51-57
    • /
    • 2013
  • A graphene(GR)-$TiO_2$ composite was synthesized from colloidal mixture of graphene oxide(GO) nanosheets and $TiO_2$ nanoparticles by an aerosol assisted self-assembly. The morphology, specific surface area and pore size of asprepared GR-$TiO_2$ composite were characterized by FE-SEM, BET, and BJH respectively. The shape of GR-$TiO_2$ composite was spherical. The average particle size was 0.5-1 ${\mu}m$ in diameter and the pore diameter ranged 20-50 nm. Photovoltaic characteristics of a mixture of the GR-$TiO_2$ and $TiO_2$ nanoparticles were measured by a solar simulator under simulated solar light. The highest photoelectric conversion efficiency of the mixture photoanode was 5.1%, which was higher than that of $TiO_2$ photoanode.

$TiO_2$ Nanocubes for Rapid Electron Transfer in Dye-Sensitized Solar Cell

  • 양혜영;방소연;이도권;고민재;김경곤
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.317-317
    • /
    • 2010
  • This paper reports syntheses of $TiO_2$ nanocubes and theirs application to DSSC. We synthesized $TiO_2$ nanocubes via solvothermal method using titanium isopropoxide (TTIP) and tetramethylammoiumhydroxide (TMAH). By adding longer alkyl chain ammonium hydroxide that slowed down the growth rate of the crystal, $TiO_2$ nanocubes were obtained with average particle size in the range of 40 nm to 70 nm. By TEM investigation, each particle was found to be single crystal of anatase having six-faces of (001) and {100} crystallographic planes truncated by {101} series of planes, which are clearly distinguishable from spherical nanoparticles. Among various application, utilizing nanocubes as photo-electrode in dye-sensitized solar cell, we investigated photo-electron conversion performances in comparison with spherical shaped $TiO_2$ nanoparticles by I-V characteristics and IPCE measurements, etc.. Photocurrent-transient analysis revealed that $TiO_2$ nanocubes have a higher transient electron transfer rate by more than 10 times compared with spherical particles of similar size. Fast electron transport along the cube edges having small curvature was suggested as a plausible origin of high diffusion coefficient of electron in nanocube $TiO_2$.

  • PDF

에어로졸 공정에 의한 그래핀-팔라듐 복합체 제조 및 글루코스 바이오센서 특성평가 (Preparation of Graphene-Palladium Composite by Aerosol Process and It's Characterization for Glucose Biosensor)

  • 김선경;장희동;장한권;최정우
    • 한국입자에어로졸학회지
    • /
    • 제10권2호
    • /
    • pp.53-59
    • /
    • 2014
  • Palladium (Pd) nanoparticles attached graphene (GR) composite was synthesized for an enhanced glucose biosensor. Aerosol spray pyrolysis (ASP) was employed to synthesize the GR-Pd composite using a colloidal mixture of graphene oxide (GO) and palladium chloride ($PdCl_2$) precursor. The effects of the weight ratio of the Pd/GR on the particle properties including the morphology and crystal structure were investigated. The morphology of GR-Pd composites was generally the shape of a crumpled paper ball, and the average composite size was about $1{\mu}m$. Pd nanoparticles less than 20 nm in diameter were deposited on GR sheets and the Pd nanoparticles showed clear crystallinity. The characteristic of the glucose biosensor fabricated with the as-prepared GR-Pd composite was tested through cyclic voltammetry measurements. The biosensor exhibited a high current flow as well as clear redox peaks, which resulted in a superior ability of the catalyst in terms of an electrochemical reaction. The highest sensitivity obtained from the amperometric response of the glucose biosensor was $14.4{\mu}A/mM{\cdot}cm^2$.