• Title/Summary/Keyword: GNSS technology

Search Result 306, Processing Time 0.021 seconds

A Study on Utilization of GNSS and Spatial Image for River Site Decision Supporting (하천 현장업무 의사지원을 위한 GNSS와 공간영상 활용방안에 관한 연구)

  • Park, Hyeon-Cheol;Choung, Yun-Jae;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.1
    • /
    • pp.118-129
    • /
    • 2011
  • This Study has developed the information system of the rivers based on 3D image GIS by converging the latest information technology of GIS(Geographic Information System), RS(Remote Sensing), GNSS(Global Navigation Satellite System), aerial laser survey(LiDAR) with real time network technology in order to understand the current situation of all the four major rivers and support the administrative management system. The said information system acquires the high resolution aerial photographs of 25cm, aerial laser survey and water depth surveying data to express precise space information on the whole Youngsan River which is the leading project site out of the four river sites. Monitoring the site is made available on the transporting means such as a helicopter, boat or a bus in connection with locational coordinate tracking skill for the moving objects in real time using GNSS. It makes monitoring all the information on the four river job sites available at a glance, which can obtain the reliability of the people to such vast areas along with enhancing the recognition of the people by publicity of four Rivers Revitalizing Project and reports thereof.

A Study on the Performane Requirement of Precise Digital Map for Road Lane Recognition (차로 구분이 가능한 정밀전자지도의 성능 요구사항에 관한 연구)

  • Kang, Woo-Yong;Lee, Eun-Sung;Lee, Geon-Woo;Park, Jae-Ik;Choi, Kwang-Sik;Heo, Moon-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.47-53
    • /
    • 2011
  • To enable the efficient operation of ITS, it is necessary to collect location data for vehicles on the road. In the case of futuristic transportation systems like ubiquitous transportation and smart highway, a method of data collection that is advanced enough to incorporate road lane recognition is required. To meet this requirement, technology based on radio frequency identification (RFID) has been researched. However, RFID may fail to yield accurate location information during high-speed driving because of the time required for communication between the tag and the reader. Moreover, installing tags across all roads necessarily incurs an enormous cost. One cost-saving alternative currently being researched is to utilize GNSS (global navigation satellite system) carrierbased location information where available. For lane recognition using GNSS, a precise digital map for determining vehicle position by lane is needed in addition to the carrier-based GNSS location data. A "precise digital map" is a map containing the location information of each road lane to enable lane recognition. At present, precise digital maps are being created for lane recognition experiments by measuring the lanes in the test area. However, such work is being carried out through comparison with vehicle driving information, without definitions being established for detailed performance specifications. Therefore, this study analyzes the performance requirements of a precise digital map capable of lane recognition based on the accuracy of GNSS location information and the accuracy of the precise digital map. To analyze the performance of the precise digital map, simulations are carried out. The results show that to have high performance of this system, we need under 0.5m accuracy of the precise digital map.

Regional Alternative Navigation Using HALE UAV, Pseudolite & Transceiver (고고도 장기체공 무인기와 의사위성/트랜시버를 활용한 국지적 대체항법에 관한 연구)

  • Choi, Min-woo;Yu, Sun-Kyoung;Kim, O-Jong;Kee, Chang-Don;Park, Byung-Woon;Seo, Seung-Woo;Park, Jun-Pyo
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.499-506
    • /
    • 2015
  • Global navigation satellite systems (GNSS) is operating widely in civil and military area. GNSS signals, however, can be easily interfered because its signal is vulnerable to jamming. Thus, a sort of backup or alternative system is needed in order that the navigation performance is assured to a certain degree in case of GNSS jamming. In order to suggest a series of backup or alternative system of regional navigation, in this paper, we introduced a high altitude long endurance unmanned aerial vehicle (HALE UAV) with pseudolites using inverted GPS and transceiver system. We simulated the positioning error of the regional navigation system using HALE UAV with inverted GPS or transceivers concepts. We estimated the position error of HALE UAV calculate user position errors based on the position error of HALE UAV and general pseudorange error.

Alternative Positioning, Navigation, and Timing Applicable to Domestic PBN Implementation (국내 PBN 이행을 위한 대안 항법 적용 방안)

  • Kim, Mu-Geun;Kang, Ja-Young;Chang, Jae-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • Republic of Korea has established its performance-based navigation (PBN) implementation plan in 2010 for ensuring a smooth transition to PBN operations and relevant new flight procedures are being developed in accordance with the roadmap. Various Navigation aids (NAVAIDs) like global navigation satellite systems (GNSS), distance measuring equipment (DME), VHF omnidirectional range (VOR), inertial navigation system (INS) are used to support PBN procedures. Among them, GNSS would play a central role in PBN implementation. However, vulnerability of satellite navigation signals to artificial and natural interferences has been discovered and various alternative positioning, navigation and timing (APNT) technologies are under development in many countries. In this paper, we study whether continuous PBN operations can be achievable without GNSS signals. As a result, it shows that some of the domestic airports require the construction of APNT in the approach area.

Analysis on BDS B1C Signal Interface (BDS B1C 신호 체계 분석)

  • Shin, Yerin;Yoo, Hoyoung
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.461-467
    • /
    • 2020
  • Most civilian positioning systems in use are based on the Global Navigation Satellite System (GNSS), which receives signals from satellites and calculates the current location. After the successful establishment of GPS from the U.S., GNSS has led to promote satellite navigation systems in various countries. Recently, China has succeeded in the radical development of its own GNSS, the BeiDou Navigation Satellite System (BDS), based on its advanced IT technology and funding power. Considering that China is rapidly expanding the service area of BDS to the world, systematic research on BDS is also required in Korea. Therefore, this paper provides overall information on B1C, the open signal of BDS, so that this information can be utilized in the design of B1C signal system and BDS B1C receiver design.

Availability Performance Analysis of Korean Wide Area Differential GNSS Test Bed (한국형 광역보정시스템 테스트베드 가용성 성능 분석)

  • Yun, Ho;Kee, Chang-Don;Kim, Do-Yoon
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.510-516
    • /
    • 2011
  • For using Global Navigation Satellite System(GNSS) in the civil aviation, it should satisfies the Required Navigation Performances(RNPs) which are defined by International Civil Aviation Organization(ICAO). RNP defines the required accuracy, integrity, availability, continuity of each flight procedure. In order to guarantee user's integrity, user's protection level has to be overestimated. On the other hand, for improving user's availability, user's protection level has to be estimated tightly. Therefore protection level should be estimated as tight as possible while it assuring the user's integrity. This paper describes the current integrity function of Korean WAD GNSS test bed, and predicts the availability performance of Korean WAD GNSS by simulation.

Development of LX GNSS On-line Data Processing System Based on the GIPSY-OASIS (GIPSY-OASIS 기반 LX GNSS 온라인 자료처리 시스템 개발)

  • Kim, Hyun-Ho;Ha, Ji-Hyun;Tcha, Dek-Kie
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.6
    • /
    • pp.555-561
    • /
    • 2014
  • Data processing service via internet help user to get the GNSS data processing result more precise and easily. Thus, online data process system is operated and developed by various research groups and national. But this service is difficult to use in domestic cadastral survey. In this study, we developed the online data processing system for a domestic cadastral survey. This is calculated coordinate using NGII CORS(SUWN) fiducially. And use PPP technique by GIPSY-OASIS. If user choose the observation data which want to calculate the coordinate, then is uploaded to GIPSY-OASIS server through FTP. After upload is complete, server automatically calculate coordinate, and send the report about result using e-mail. And it takes 2 minutes runtime on the basis of the 3 sessions. To verify the result, we used the data on SOUL, JUNJ as compared with notified-coordinate from NGII. As a result, got the difference for east-west 1.4 cm, north-south -1.0 cm, vertical 0.5 cm.

Prediction of the IGS RTS Correction using Polynomial Model at IOD Changes (IOD 변화 시점에서 다항식 모델을 사용한 IGS RTS 보정정보 예측)

  • Kim, Mingyu;Kim, Jinho;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.533-539
    • /
    • 2020
  • Real-time service (RTS) provided by IGS provides correction for GNSS orbit and clock via internet, so it is widely used in fields that require real-time precise positioning. However, the RTS signal may be lost due to an unstable Internet environment. When signal disconnection occurs, signal prediction can be performed using polynomial models. However, the RTS changes rapidly after the GNSS navigation message issue of data (IOD) changes, so it is difficult to predict when signal loss occurs at that point. In this study, we proposed an algorithm to generate continuous RTS correction information by applying the difference in navigation trajectory according to IOD change. The use of this algorithm can improve the accuracy of RTS prediction at IOD changes. After performing optimization studies to improve RTS prediction performance, the predicted RTS trajectory information was applied to precision positioning (PPP). Compared to the conventional method, the position error is significantly reduced, and the error increase along with the signal loss interval increase is reduced.

Real-time LSTM Prediction of RTS Correction for PPP by a Low-cost Positioning Device (저가형 측위장치에 RTS 보정정보의 실시간 LSTM 예측 기능 구현을 통한 PPP)

  • Kim, Beomsoo;Kim, Mingyu;Kim, Jeongrae;Bu, Sungchun;Lee, Chulsoo
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.119-124
    • /
    • 2022
  • The international gnss service (IGS) provides real-time service (RTS) orbit and clock correction applicable to the broadcast ephemeris of GNSS satellites. However, since the RTS correction cannot be received if the Internet connection is lost, the RTS correction should be predicted and used when a signal interruption occurs in order to perform stable precise point positioning (PPP). In this paper, PPP was performed by predicting orbit and clock correction using a long short-term memory (LSTM) algorithm in real-time during the signal loss. The prediction performance was analyzed by implementing the LSTM algorithm in RPI (raspberry pi), the processing speed of which is not high. Compared to the polynomial prediction model, LSTM showed excellent performance in long-term prediction.

Development of MATLAB GUI Based Software for Generating Multi-GNSS Network RTK MAC Correction (MATLAB GUI 기반 다중 위성군 Network RTK MAC 보정정보 생성 소프트웨어 개발)

  • Bu-Gyeom Kim;Changdon Kee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.412-417
    • /
    • 2022
  • In this paper, multi-GNSS network RTK MAC correction generation software developed based on MATLAB GUI is introduced. The software was developed as a post-processing software based on simulation data to evaluate the feasibility of an algorithm for generating correction for multi-GNSS including GPS, GLONASS, and Galileo. As a result of software operation, network RTK correction for each system of multi-GNSS is output in MATLAB file format. In this paper, to evaluate the performance of the developed software, the residual error was analyzed after applying the correction generated through the software to the user. As a result of the analysis, it was confirmed that effective network RTK correction could be generated by confirming that the residual errors of users were maintained at 10 cm or less.