• Title/Summary/Keyword: GNSS simulator

Search Result 44, Processing Time 0.023 seconds

Software-based Real-time GNSS Signal Generation and Processing Using a Graphic Processing Unit (GPU)

  • Im, Sung-Hyuck;Jee, Gyu-In
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.3
    • /
    • pp.99-105
    • /
    • 2014
  • A graphic processing unit (GPU) can perform the same calculation on multiple data (SIMD: single instruction multiple data) using hundreds of to thousands of special purpose processors for graphic processing. Thus, high efficiency is expected when GPU is used for the generation and correlation of satellite navigation signals, which perform generation and processing by applying the same calculation procedure to tens of millions of discrete signal samples per second. In this study, the structure of a GPU-based GNSS simulator for the generation and processing of satellite navigation signals was designed, developed, and verified. To verify the developed satellite navigation signal generator, generated signals were applied to the OEM-V3 receiver of Novatel Inc., and the measured values were examined. To verify the satellite navigation signal processor, the performance was examined by collecting and processing actual GNSS intermediate frequency signals. The results of the verification indicated that satellite navigation signals could be generated and processed in real time using two GPUs.

ANALYSIS OF SPATIAL AND TEMPORAL ADAPTIVE PROCESSING FOR GNSS INTERFERENCE MITIGATION

  • Chang, Chung-Liang;Juang, Jyh-Ching
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.143-148
    • /
    • 2006
  • The goal of this paper is to analyze, through simulations and experiments, GNSS interference mitigation performance under various types of antenna structures against wideband and narrowband interferences using spatial-temporal adaptive signal processing (STAP) techniques. The STAP approach, which combines spatial and temporal processing, is a viable means of GNSS array signal processing that enhancing the desired signal quality and providing protection against interference. In this paper, we consider four types of 3D antenna array structure - Uniform Linear Array (ULA), Uniform Rectangular Array (URA), Uniform Circular Array (UCA), and the Single-Ring Cylindrical Array (SRCA) under an interference environment. Analytical evaluation and simulations are performed to investigate the system performance. This is followed by simulation GPS orbits in interfered environment are used to evaluate the STAP performance. Furthermore, experiments using a 2x2 URA hardware simulator data show that with the removal of wideband and narrowband interference through the STAP techniques, the signal tracking performance can be enhanced.

  • PDF

A Study on Enhanced Accuracy using GPS L1 and Galileo E1 Signal Combined Processing (GPS L1/갈릴레오 E1 복합신호처리를 통한 위치정확도 향상 연구)

  • Sin, Cheon-Sig;Lee, Sang-Uk;Yoon, Dong-Won
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.68-74
    • /
    • 2011
  • In this paper, we present the enhancement results such as availability and accuracy using the GPS L1 and Galileo E1 signal combination. To enhance the acquisition and tracking performance of signal processing in GNSS receiver. several tracking loops with integrator, discriminator, and loop filter module are applied. Also, this paper presents the performance comparison results between prototype receiver equipped with hardware board and software receiver. Also the tracking loop performance of real hardware receiver is verified by comparing with tracking accuracy, sensitivity occurred by the Spirent simulator. Especially, to process the Galileo E1 signal, it is used the a power early late type which is the typical type for DLL discriminator.

Development of a Simulation Tool to Evaluate GNSS Positioning Performance in Urban Area

  • Wu, Falin;Liu, Gang-Jun;Zhang, Kefei;Densley, Liam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.71-76
    • /
    • 2006
  • With the rapid development of spatial infrastructure in US, Europe, Japan, China and India, there is no doubt that the next generation Global Navigation Satellite System (GNSS) will improve the integrity, accuracy, reliability and availability of the position solution. GNSS is becoming an essential element of personal, commercial and public infrastructure and consequently part of our daily lives. However, the applicability of GPS in supporting a range of location-sensitive applications such as location based services in an urban environment is severely curtailed by the interference of the 3D urban settings. To characterize and gain in-depth understanding of such interferences and to be able to provide location-based optimization alternatives, a high-fidelity 3D urban model of Melbourne CBD built with ArcGIS and large scale high-resolution spatial data sets is used in this study to support a comprehensive simulation of current and future GNSS signal performance, in terms of signal continuity, availability, strength, geometry, positioning accuracy and reliability based on a number of scenarios. The design, structure and major components of the simulator are outlined. Useful time-stamped spatial patterns of the signal performance over the experimental urban area have been revealed which are valuable for supporting location based services applications, such as emergency responses, the optimization of wireless communication infrastructures and vehicle navigation services.

  • PDF

A Study on the Implementation and Performance Analysis of Software Based GPS L1 and Galileo E1/E5a Signal Processing (소프트웨어 기반의 GPS L1 및 갈릴레오 E1/E5a 신호 처리 구현 및 성능에 관한 연구)

  • Sin, Cheon-Sig;Lee, Sang-Uk;Yoon, Dong-Won;Kim, Jae-Hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.3
    • /
    • pp.319-326
    • /
    • 2009
  • In this paper, the key technologies of Navigation receiver for GNSS sensor station are presented as a development result of a GNSS ground station in ETRI. A wide-band antenna and RF/IF components and SW signal processing unit to cover the GPS and Galileo signals for GNSS receiver are developed and its performance is verified by using GPS live signal and GNSS RF signal simulator from SpirentTM. We also gather GIOVE-A signal by using H/W antenna and RF/IF units in IF-level as sampling frequency and bit number, 112MHz and 8bits, respectively by using the developed wide-band antenna and RF/IF components. Data acquisition is done by using commercial data acquisition device from National Instrument TM. The gathered data is fed into SW receiver to process Galileo E1 to verify Galileo signal processing by Galileo live signal from GIOVE-A.

  • PDF

Implementation of GPS Spoofing Test Environment using Multiple GPS Simulators

  • So, Hyoungmin
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.4
    • /
    • pp.165-172
    • /
    • 2016
  • A Global Navigation Satellite System (GNSS), which is typically exemplified by the Global Positioning System (GPS), employs a open signal structure so it is vulnerable to spoofing electronic attack using a similar malicious signal with that used in the GPS. It is necessary to require a spoofing test evaluation environment to check the risk of spoofing attack and evaluate the performance of a newly developed anti-spoofing technique against spoofing attacks. The present paper proposed a simulation method of spoofing environment based on simulator that can be implementable in a test room and analyzed the spoofing simulation performance using commercial GPS receivers. The implemented spoofing simulation system ran synchronized two GPS simulator modules in a single scenario to generate both of spoofing and GPS signals simultaneously. Because the signals are generated in radio frequency, a commercial GPS receiver can be tested using this system. Experimental test shows the availability of this system, and anti-spoofing performance of a commercial GPS receiver has been analyzed.

A Comparison of Meta-learning and Transfer-learning for Few-shot Jamming Signal Classification

  • Jin, Mi-Hyun;Koo, Ddeo-Ol-Ra;Kim, Kang-Suk
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.163-172
    • /
    • 2022
  • Typical anti-jamming technologies based on array antennas, Space Time Adaptive Process (STAP) & Space Frequency Adaptive Process (SFAP), are very effective algorithms to perform nulling and beamforming. However, it does not perform equally well for all types of jamming signals. If the anti-jamming algorithm is not optimized for each signal type, anti-jamming performance deteriorates and the operation stability of the system become worse by unnecessary computation. Therefore, jamming classification technique is required to obtain optimal anti-jamming performance. Machine learning, which has recently been in the spotlight, can be considered to classify jamming signal. In general, performing supervised learning for classification requires a huge amount of data and new learning for unfamiliar signal. In the case of jamming signal classification, it is difficult to obtain large amount of data because outdoor jamming signal reception environment is difficult to configure and the signal type of attacker is unknown. Therefore, this paper proposes few-shot jamming signal classification technique using meta-learning and transfer-learning to train the model using a small amount of data. A training dataset is constructed by anti-jamming algorithm input data within the GNSS receiver when jamming signals are applied. For meta-learning, Model-Agnostic Meta-Learning (MAML) algorithm with a general Convolution Neural Networks (CNN) model is used, and the same CNN model is used for transfer-learning. They are trained through episodic training using training datasets on developed our Python-based simulator. The results show both algorithms can be trained with less data and immediately respond to new signal types. Also, the performances of two algorithms are compared to determine which algorithm is more suitable for classifying jamming signals.

Method of BeiDou Pseudorange Correction for Multi-GNSS Augmentation System (멀티 GNSS 보정시스템을 위한 BeiDou 의사거리 보정기법)

  • Seo, Ki-Yeol;Kim, Young-Ki;Jang, Won-Seok;Park, Sang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2307-2314
    • /
    • 2015
  • This paper focuses on the generation algorithm of BeiDou pseudorange correction (PRC) and simulation based performance verification for design of Differential Global Navigation Satellite System (DGNSS) reference station and integrity monitor (RSIM) in order to prepare for recapitalization of DGNSS. First of all, it discusses the International standard on DGNSS RSIM, based on the interface control document (ICD) for BeiDou, estimates the satellite position using satellite clock offset and user receiver clock offset, and the system time offset between Global Positioning System (GPS) and BeiDou. Using the performance verification platform interfaced with GNSS (GPS/BeiDou) simulator, it calculates the BeiDou pseudorange corrections , compares the results of position accuracy with GPS/DGPS. As the test results, this paper verified to meet the performance of position accuracy for DGNSS RSIM operation required on Radio Technical Commission for Maritime Services (RTCM) standard.

Technical Issues on Implementation of GPS Signal Authentication System

  • So, Hyoungmin;Jang, Jaegyu;Lee, Kihoon;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.3
    • /
    • pp.139-146
    • /
    • 2018
  • In recent years, a satellite navigation signal authentication technique has been introduced to determine the spoofing of commercial C/A code using the cross-correlation mode of GPS P(Y) code received at two receivers. This paper discusses the technical considerations in the implementation and application of authentication system simulator hardware to achieve the above technique. The configuration of the simulator consists of authentication system and user receiver. The synchronization of GPS signals received at two devices, data transmission and reception, and codeless correlation of P(Y) code were implemented. The simulation test result verified that spoofing detection using P(Y) codeless correlation could be achieved.