• Title/Summary/Keyword: GMR Resonance

Search Result 10, Processing Time 0.024 seconds

Analysis of Resonance Scattering Characteristics by Multi-layered Dielectric Gratings (다층 유전체 격자구조에 의한 공진 산란특성의 분석)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.231-236
    • /
    • 2017
  • The space harmonics generated by a plane-wave incident upon a multi-layered dielectric grating can undergo strong resonance scattering variations known as GMR(guided-mode resonance). To clarify these effects, we examine the field propagation and dispersion curve inside the grating region by using a rigorous equivalent transmission-line theory(RETT). The results show that, at the peak of a scattering resonance, the reflected mode is almost identical to a leaky wave that can be supported by the grating structure. Thus, we confirm and generalize previous research that has occurred GMR effect associated with the free-resonant character of leaky waves at multi-layered dielectric gratings. Quantitative simulation results illustrating the behavior of typical gratings are given, and the special case of normal incidence is discussed for TM mode.

Implementation of GMR Filter enabled by Dual-Period Grating (이중주기 격자로 구성된 GMR 필터의 구현)

  • Kwang-Chun Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.5
    • /
    • pp.141-146
    • /
    • 2024
  • The dynamic characteristics of the GMR filter composed of dual-period gratings are explored. Gratings consisting of several gloves and slits that generate reflection and transmission properties within each period are considered. It is found that the proposed composite grating can be designed to enhance as well as offset the diffraction orders of TE and TM modes depending on the number of dual-period grating. In order to derive the general characteristics of diffraction power, numerical analysis is performed by applying the modal transmission-line theory based on eigenvalue problem. As a result of the numerical analysis, it is confirmed that a simple and effective GMR filter can be implemented by selectively manipulating the resonance mode of the composite structure, which is useful for designing NIR broad-band filter, emitter and absorber.

Analysis of GMR Phenomenon by Asymmetric Multi-layered Dielectric Gratings (비대칭 다층 유전체 격자구조에 의한 GMR 현상의 분석)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.209-214
    • /
    • 2017
  • A plane-wave incident upon asymmetric multi-layered dielectric grating as well as symmetric grating structure generates space harmonics. Selected space harmonics among those harmonics can undergo strong resonance scattering variations known as GMR(guided-mode resonance). In this paper, to clarify these effects, the field propagation and dispersion curve inside the grating region are analyzed by using a rigorous equivalent transmission-line theory(RETT) based on eigenvalue problem. The results show that, at the peak of a scattering resonance, the reflected mode is almost identical to a leaky wave that can be supported by the grating structure. Thus, it confirms to be occurred GMR effect associated with the free-resonant character of leaky waves at asymmetric multi-layered dielectric gratings. Quantitative simulation results illustrating the behavior of typical gratings are given, and the special case of normal incidence is discussed for TE and TM modes.

Properties of Exchange Bias Coupling Field and Coercivity Using the Micron-size Holes Formation Inside GMR-SV Film (GMR-SV 박막내 미크론 크기의 홀 형성을 이용한 교환결합세기와 보자력 특성연구)

  • Bolormaa, Munkhbat;Khajidmaa, Purevdorj;Hwang, Do-Guwn;Lee, Sang-Suk;Lee, Won-Hyung;Rhee, Jang-Roh
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.4
    • /
    • pp.117-122
    • /
    • 2015
  • The holes with a diameter of $35{\mu}m$ inside the GMR-SV (giant magnetoresistance-spin valve) film were patterned by using the photolithography process and ECR (electron cyclotron resonance) Ar-ion milling. From the magnetoresistance curves of the GMR-SV film with holes measuring by 4-electrode method, the MR (magnetoresistance ratio) and MS (magnetic sensitivity) are almost same as the values of initial states. On other side hand, the $H_{ex}$ (exchange bias coupling field) and $H_c$ (coercivity) dominantly increased from 120 Oe and 10 Oe to 190 Oe and 41 Oe as increment of the number of holes inside GMR-SV film respectively. These results were shown to be attributed to major effect of EMD (easy magnetic domian) having a region positioned between two holes perpendicular to the sensing current. On the basis of this study, the fabrication of GMR-SV applying to the hole formation improved the magnetoresistance properties having the thermal stability and durability of bio-device.

Independent Color Filtering of Differently Polarized Light Using Metal-Insulator-Metal Type Guided Mode Resonance Structure

  • Jung, Young Jin;Park, Namkyoo
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.180-187
    • /
    • 2016
  • The independent operation of a color filter for incident polarization is demonstrated using a guided-mode resonance (GMR) filter employing a metal-insulator-metal (MIM) waveguide. To achieve independent operation, a rectangular MIM grating is proposed as a wave-guide resonator. The design considerations are discussed and include how to determine the grating period and slit width. Power flow distribution is observed with slit width variation. Blue-green, green-red, and blue-red filters for corresponding x- and y-polarizations are demonstrated as application examples with numerical simulation with rectangle-shaped MIM grating. As a practical application, feasibility as a chromatic polarizer is discussed.

Effect of Highly Oriented Layer on GMR and Magnetic Properties of NiFe/Cu Thin Film Prepared by Magnetron Sputtering

  • Yoo, Yong-Goo;Yu, Seong-Cho;Min, Seong-Gi;Kim, Kyeong-Sup;Jang, Pyung-Woo
    • Journal of Magnetics
    • /
    • v.6 no.4
    • /
    • pp.129-131
    • /
    • 2001
  • In order to investigate the effect of the interface on GMR, [NiFe(25 ${\AA}$)/Cu(24${\AA}$)]$_2$/Si thin film was epitaxially grown on HF-treated Si (001) substrate using a DC magnetron sputtering method. Typical GMR effects could be observed in epitaxial film with a weak antiferromagnetic exchange coupling while non epitaxial film showed unsaturated and broad MR curves probably due to inter-diffusion between NiFe and Cu layers. Ferromagnetic resonance (FMR) experiment showed two distinct absorption peaks in all films. Each peak was revealed to come from each NiFe layer with different magnetic property. In FMR measurement very clear interface in epitaxial films could be confirmed by a lower value of line width (ΔH) and higher M$\sub$s/ of epitaxial film than those of non epitaxial films, respectively.

  • PDF

Enhanced Absorption Efficiency of Solar Cells Using Guided-mode Resonance (도파모드 공진을 이용한 태양전지의 흡수효율 증대)

  • Kim, Doo-Sung;Kim, Sang-In;Lee, Jae-Jin;Lim, Han-Jo
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • In this study, we propose a grating structure using guided-mode resonance (GMR) to increase the absorption efficiency of a silicon solar cell. The proposed solar cell design consists of a one-dimensional diffraction grating and a planar waveguide layer of poly-silicon deposited on a silver reflector. We investigate the influence of structure parameters such as grating period, waveguide thickness, grating width and grating depth. Optimal parameters are found using the particle swarm optimization (PSO) algorithm. In the optimized GMR-assisted solar cell, absorption efficiency up to 65.8% is achieved in the wavelength range of 300 nm~750 nm.

Nonlinear vibration analysis of MSGT boron-nitride micro ribbon based mass sensor using DQEM

  • Mohammadimehr, M.;Monajemi, Ahmad A.
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.1029-1062
    • /
    • 2016
  • In this research, the nonlinear free vibration analysis of boron-nitride micro ribbon (BNMR) on the Pasternak elastic foundation under electrical, mechanical and thermal loadings using modified strain gradient theory (MSGT) is studied. Employing the von $K{\acute{a}}rm{\acute{a}}n$ nonlinear geometry theory, the nonlinear equations of motion for the graphene micro ribbon (GMR) using Euler-Bernoulli beam model with considering attached mass and size effects based on Hamilton's principle is obtained. These equations are converted into the nonlinear ordinary differential equations by elimination of the time variable using Kantorovich time-averaging method. To determine nonlinear frequency of GMR under various boundary conditions, and considering mass effect, differential quadrature element method (DQEM) is used. Based on modified strain MSGT, the results of the current model are compared with the obtained results by classical and modified couple stress theories (CT and MCST). Furthermore, the effect of various parameters such as material length scale parameter, attached mass, temperature change, piezoelectric coefficient, two parameters of elastic foundations on the natural frequencies of BNMR is investigated. The results show that for all boundary conditions, by increasing the mass intensity in a fixed position, the linear and nonlinear natural frequency of the GMR reduces. In addition, with increasing of material length scale parameter, the frequency ratio decreases. This results can be used to design and control nano/micro devices and nano electronics to avoid resonance phenomenon.

Fabrication and Performance of Electron Cyclotron Resonance Ion Milling System for Etching of Magnetic Film Device (자성박막 소자 에칭용 전자 사이클로트론 공명 이온밀링 시스템 제작과 특성연구)

  • Lee, Won-Hyung;Hwang, Do-Guwn;Lee, Sang-Suk;Rhee, Jang-Roh
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.5
    • /
    • pp.149-155
    • /
    • 2015
  • The ECR (Electron Cyclotron Resonance) Ar ion milling was manufactured to fabricate the device of thin film. The ECR ion milling system applied to the device etching operated by a power of 600W, a frequency of 2.45 GHz, and a wavelength of 12.24 cm and transferred by a designed waveguide. In order to match one resonant frequency, a magnetic field of 908 G was applied to a cavity inside of ECR. The Ar gas intruded into a cavity and created the discharged ion beam. The surface of target material was etched by the ion beam having an acceleration voltage of 1000 V. The formed devices with a width of $1{\mu}m{\sim}9{\mu}m$ on the GMR-SV (Giant magnetoresistance-spin valve) multilayer after three major processes such as photo lithography, ion milling, and electrode fabrication were observed by the optical microscope.

Implementation of Optical Sensor based on Block Surface Wave and Diffraction Grating Profile (Block 표면파와 회절 격자구조에 기초한 광학 센서의 구현)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.143-148
    • /
    • 2021
  • A systematic study of Bloch surface wave (BSW), which is created by guided mode resonance (GMR) of dielectric multilayer structures with a grating profile, is presented to analyze the sensing performance of bio-sensors. The effect of structural parameters on optical behavior is evaluated by using Babinet's principle and modal transmission-line theory. The sensitivity of designed bio-sensors is proportional to the grating constant at wavelength spectrum, and inversely proportional to the normal wave vector of incident electromagnetic wave at angular spectrum. Numerical results for two devices with SiO/SiO2 and TiO2/SiO2 multilayer dielectric stacks are presented, showing that BSW can be exploited for the realization of efficient diffraction-based bio-sensors from infrared to visible-band range.