• Title/Summary/Keyword: GMM parameters

Search Result 60, Processing Time 0.029 seconds

A Neuro-Fuzzy System Modeling using Gaussian Mixture Model and Clustering Method (GMM과 클러스터링 기법에 의한 뉴로-퍼지 시스템 모델링)

  • Kim, Sung-Suk;Kwak, Keun-Chang;Ryu, Jeong-Woong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.571-576
    • /
    • 2002
  • There have been a lot of considerations dealing with improving the performance of neuro-fuzzy system. The studies on the neuro-fuzzy modeling have largely been devoted to two approaches. First is to improve performance index of system. The other is to reduce the structure size. In spite of its satisfactory result, it should be noted that these are difficult to extend to high dimensional input or to increase the membership functions. We propose a novel neuro-fuzzy system based on the efficient clustering method for initializing the parameters of the premise part. It is a very useful method that maintains a few number of rules and improves the performance. It combine the various algorithms to improve the performance. The Expectation-Maximization algorithm of Gaussian mixture model is an efficient estimation method for unknown parameter estimation of mirture model. The obtained parameters are used for fuzzy clustering method. The proposed method satisfies these two requirements using the Gaussian mixture model and neuro-fuzzy modeling. Experimental results indicate that the proposed method is capable of giving reliable performance.

Laryngeal Cancer Screening using Cepstral Parameters (켑스트럼 파라미터를 이용한 후두암 검진)

  • 이원범;전경명;권순복;전계록;김수미;김형순;양병곤;조철우;왕수건
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.14 no.2
    • /
    • pp.110-116
    • /
    • 2003
  • Background and Objectives : Laryngeal cancer discrimination using voice signals is a non-invasive method that can carry out the examination rapidly and simply without giving discomfort to the patients. n appropriate analysis parameters and classifiers are developed, this method can be used effectively in various applications including telemedicine. This study examines voice analysis parameters used for laryngeal disease discrimination to help discriminate laryngeal diseases by voice signal analysis. The study also estimates the laryngeal cancer discrimination activity of the Gaussian mixture model (GMM) classifier based on the statistical modelling of voice analysis parameters. Materials and Methods : The Multi-dimensional voice program (MDVP) parameters, which have been widely used for the analysis of laryngeal cancer voice, sometimes fail to analyze the voice of a laryngeal cancer patient whose cycle is seriously damaged. Accordingly, it is necessary to develop a new method that enables an analysis of high reliability for the voice signals that cannot be analyzed by the MDVP. To conduct the experiments of laryngeal cancer discrimination, the authors used three types of voices collected at the Department of Otorhinorlaryngology, Pusan National University Hospital. 50 normal males voice data, 50 voices of males with benign laryngeal diseases and 105 voices of males laryngeal cancer. In addition, the experiment also included 11 voices data of males with laryngeal cancer that cannot be analyzed by the MDVP, Only monosyllabic vowel /a/ was used as voice data. Since there were only 11 voices of laryngeal cancer patients that cannot be analyzed by the MDVP, those voices were used only for discrimination. This study examined the linear predictive cepstral coefficients (LPCC) and the met-frequency cepstral coefficients (MFCC) that are the two major cepstrum analysis methods in the area of acoustic recognition. Results : The results showed that this met frequency scaling process was effective in acoustic recognition but not useful for laryngeal cancer discrimination. Accordingly, the linear frequency cepstral coefficients (LFCC) that excluded the met frequency scaling from the MFCC was introduced. The LFCC showed more excellent discrimination activity rather than the MFCC in predictability of laryngeal cancer. Conclusion : In conclusion, the parameters applied in this study could discriminate accurately even the terminal laryngeal cancer whose periodicity is disturbed. Also it is thought that future studies on various classification algorithms and parameters representing pathophysiology of vocal cords will make it possible to discriminate benign laryngeal diseases as well, in addition to laryngeal cancer.

  • PDF

(Lip Recognition Using Active Shape Model and Gaussian Mixture Model) (Active Shape 모델과 Gaussian Mixture 모델을 이용한 입술 인식)

  • 장경식;이임건
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.454-460
    • /
    • 2003
  • In this paper, we propose an efficient method for recognizing human lips. Based on Point Distribution Model, a lip shape is represented as a set of points. We calculate a lip model and the distribution of shape parameters using Principle Component Analysis and Gaussian mixture, respectively. The Expectation Maximization algorithm is used to determine the maximum likelihood parameter of Gaussian mixture. The lip contour model is derived by using the gray value changes at each point and in regions around the point and used to search the lip shape in a image. The experiments have been performed for many images, and show very encouraging result.

Speaker-Dependent Emotion Recognition For Audio Document Indexing

  • Hung LE Xuan;QUENOT Georges;CASTELLI Eric
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.92-96
    • /
    • 2004
  • The researches of the emotions are currently great interest in speech processing as well as in human-machine interaction domain. In the recent years, more and more of researches relating to emotion synthesis or emotion recognition are developed for the different purposes. Each approach uses its methods and its various parameters measured on the speech signal. In this paper, we proposed using a short-time parameter: MFCC coefficients (Mel­Frequency Cepstrum Coefficients) and a simple but efficient classifying method: Vector Quantification (VQ) for speaker-dependent emotion recognition. Many other features: energy, pitch, zero crossing, phonetic rate, LPC... and their derivatives are also tested and combined with MFCC coefficients in order to find the best combination. The other models: GMM and HMM (Discrete and Continuous Hidden Markov Model) are studied as well in the hope that the usage of continuous distribution and the temporal behaviour of this set of features will improve the quality of emotion recognition. The maximum accuracy recognizing five different emotions exceeds $88\%$ by using only MFCC coefficients with VQ model. This is a simple but efficient approach, the result is even much better than those obtained with the same database in human evaluation by listening and judging without returning permission nor comparison between sentences [8]; And this result is positively comparable with the other approaches.

  • PDF

IT Investment and Financial Performance Volatility: The Moderating Role of Industry Environment and IT Strategy Emphasis

  • Wahyu Agus Winarno;Slamin
    • Asia pacific journal of information systems
    • /
    • v.32 no.4
    • /
    • pp.707-727
    • /
    • 2022
  • Industrial revolution 4.0 makes business competition more challenging and will impact the instability of the company's financial performance. Dynamic environmental conditions make it difficult for companies to make predictions in making decisions. Investing in information technology (IT) is one way for companies to maintain financial stability and competitive advantage in dynamic competition. Resource-Based Theory (RBT) explains that information technology (IT) is a resource that can create a competitive advantage for the company. This study aims to examine the moderating role of dynamic industrial environments and IT strategic emphasis on the relationship between a lag effect of IT investment and firm's financial performance volatility. Using the data of companies listed on the Indonesia Stock Exchange (IDX) for five years starting from 2013-2017, the method used to estimate the research model's parameters is the generalized method of moments (GMM) approach. The results show that the industrial environment and the emphasis on IT strategy have a role in moderating and strengthening the relationship between the time lag in IT investment in reducing the firm's financial performance volatility.

Voice Personality Transformation Using a Probabilistic Method (확률적 방법을 이용한 음성 개성 변환)

  • Lee Ki-Seung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.150-159
    • /
    • 2005
  • This paper addresses a voice personality transformation algorithm which makes one person's voices sound as if another person's voices. In the proposed method, one person's voices are represented by LPC cepstrum, pitch period and speaking rate, the appropriate transformation rules for each Parameter are constructed. The Gaussian Mixture Model (GMM) is used to model one speaker's LPC cepstrums and conditional probability is used to model the relationship between two speaker's LPC cepstrums. To obtain the parameters representing each probabilistic model. a Maximum Likelihood (ML) estimation method is employed. The transformed LPC cepstrums are obtained by using a Minimum Mean Square Error (MMSE) criterion. Pitch period and speaking rate are used as the parameters for prosody transformation, which is implemented by using the ratio of the average values. The proposed method reveals the superior performance to the previous VQ-based method in subjective measures including average cepstrum distance reduction ratio and likelihood increasing ratio. In subjective test. we obtained almost the same correct identification ratio as the previous method and we also confirmed that high qualify transformed speech is obtained, which is due to the smoothly evolving spectral contours over time.

Infrared Image Segmentation by Extracting and Merging Region of Interest (관심영역 추출과 통합에 의한 적외선 영상 분할)

  • Yeom, Seokwon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.493-497
    • /
    • 2016
  • Infrared (IR) imaging is capable of detecting targets that are not visible at night, thus it has been widely used for the security and defense system. However, the quality of the IR image is often degraded by low resolution and noise corruption. This paper addresses target segmentation with the IR image. Multiple regions of interest (ROI) are extracted by the multi-level segmentation and targets are segmented from the individual ROI. Each level of the multi-level segmentation is composed of a k-means clustering algorithm an expectation-maximization (EM) algorithm, and a decision process. The k-means clustering algorithm initializes the parameters of the Gaussian mixture model (GMM) and the EM algorithm iteratively estimates those parameters. Each pixel is assigned to one of clusters during the decision. This paper proposes the selection and the merging of the extracted ROIs. ROI regions are selectively merged in order to include the overlapped ROI windows. In the experiments, the proposed method is tested on an IR image capturing two pedestrians at night. The performance is compared with conventional methods showing that the proposed method outperforms others.

A PCA-based MFDWC Feature Parameter for Speaker Verification System (화자 검증 시스템을 위한 PCA 기반 MFDWC 특징 파라미터)

  • Hahm Seong-Jun;Jung Ho-Youl;Chung Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.36-42
    • /
    • 2006
  • A Principal component analysis (PCA)-based Mel-Frequency Discrete Wavelet Coefficients (MFDWC) feature Parameters for speaker verification system is Presented in this Paper In this method, we used the 1st-eigenvector obtained from PCA to calculate the energy of each node of level that was approximated by. met-scale. This eigenvector satisfies the constraint of general weighting function that the squared sum of each component of weighting function is unity and is considered to represent speaker's characteristic closely because the 1st-eigenvector of each speaker is fairly different from the others. For verification. we used Universal Background Model (UBM) approach that compares claimed speaker s model with UBM on frame-level. We performed experiments to test the effectiveness of PCA-based parameter and found that our Proposed Parameters could obtain improved average Performance of $0.80\%$compared to MFCC. $5.14\%$ to LPCC and 6.69 to existing MFDWC.

Compromised feature normalization method for deep neural network based speech recognition (심층신경망 기반의 음성인식을 위한 절충된 특징 정규화 방식)

  • Kim, Min Sik;Kim, Hyung Soon
    • Phonetics and Speech Sciences
    • /
    • v.12 no.3
    • /
    • pp.65-71
    • /
    • 2020
  • Feature normalization is a method to reduce the effect of environmental mismatch between the training and test conditions through the normalization of statistical characteristics of acoustic feature parameters. It demonstrates excellent performance improvement in the traditional Gaussian mixture model-hidden Markov model (GMM-HMM)-based speech recognition system. However, in a deep neural network (DNN)-based speech recognition system, minimizing the effects of environmental mismatch does not necessarily lead to the best performance improvement. In this paper, we attribute the cause of this phenomenon to information loss due to excessive feature normalization. We investigate whether there is a feature normalization method that maximizes the speech recognition performance by properly reducing the impact of environmental mismatch, while preserving useful information for training acoustic models. To this end, we introduce the mean and exponentiated variance normalization (MEVN), which is a compromise between the mean normalization (MN) and the mean and variance normalization (MVN), and compare the performance of DNN-based speech recognition system in noisy and reverberant environments according to the degree of variance normalization. Experimental results reveal that a slight performance improvement is obtained with the MEVN over the MN and the MVN, depending on the degree of variance normalization.

Performance Improvement of Speaker Recognition by MCE-based Score Combination of Multiple Feature Parameters (MCE기반의 다중 특징 파라미터 스코어의 결합을 통한 화자인식 성능 향상)

  • Kang, Ji Hoon;Kim, Bo Ram;Kim, Kyu Young;Lee, Sang Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.679-686
    • /
    • 2020
  • In this thesis, an enhanced method for the feature extraction of vocal source signals and score combination using an MCE-Based weight estimation of the score of multiple feature vectors are proposed for the performance improvement of speaker recognition systems. The proposed feature vector is composed of perceptual linear predictive cepstral coefficients, skewness, and kurtosis extracted with lowpass filtered glottal flow signals to eliminate the flat spectrum region, which is a meaningless information section. The proposed feature was used to improve the conventional speaker recognition system utilizing the mel-frequency cepstral coefficients and the perceptual linear predictive cepstral coefficients extracted with the speech signals and Gaussian mixture models. In addition, to increase the reliability of the estimated scores, instead of estimating the weight using the probability distribution of the convectional score, the scores evaluated by the conventional vocal tract, and the proposed feature are fused by the MCE-Based score combination method to find the optimal speaker. The experimental results showed that the proposed feature vectors contained valid information to recognize the speaker. In addition, when speaker recognition is performed by combining the MCE-based multiple feature parameter scores, the recognition system outperformed the conventional one, particularly in low Gaussian mixture cases.