• Title/Summary/Keyword: GMM method

Search Result 301, Processing Time 0.029 seconds

Upgraded quadratic inference functions for longitudinal data with type II time-dependent covariates

  • Cho, Gyo-Young;Dashnyam, Oyunchimeg
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.211-218
    • /
    • 2014
  • Qu et. al. (2000) proposed the quadratic inference functions (QIF) method to marginal model analysis of longitudinal data to improve the generalized estimating equations (GEE). It yields a substantial improvement in efficiency for the estimators of regression parameters when the working correlation is misspecified. But for the longitudinal data with time-dependent covariates, when the implicit full covariates conditional mean (FCCM) assumption is violated, the QIF can not provide more consistent and efficient estimator than GEE (Cho and Dashnyam, 2013). Lai and Small (2007) divided time-dependent covariates into three types and proposed generalized method of moment (GMM) for longitudinal data with time-dependent covariates. They showed that their GMM type II and GMM moment selection methods can be more ecient than GEE with independence working correlation (GEE-ind) in the case of type II time-dependent covariates. We develop upgraded QIF method for type II time-dependent covariates. We show that this upgraded QIF method can provide substantial gains in efficiency over QIF and GEE-ind in the case of type II time-dependent covariates.

The Hybrid Bandwidth Extenstion Method Using Spectral Folding and GMM Transformation (Spectral Folding방법과 GMM 변환을 이용한 대역폭 확장의 Hybrid 방법)

  • Choi Mu-Yeol;Kim Hyung-Soon
    • Proceedings of the KSPS conference
    • /
    • 2006.05a
    • /
    • pp.131-134
    • /
    • 2006
  • The narrowband speech over the telephone network is lacking in the information from low-band (0-300 Hz) and high-band (3400-8000 Hz) that are found in wideband speech (0-8000 Hz). As a result, narrowband speech is characterized by the reduced intelligibility and muffled quality, and degraded speaker identification. Spectral folding is the easiest way to reconstruct the missing high-band; however, the reconstructed speech still brings the sense of band-limited characteristic because of the absence of low-band and mid-band frequency components. To compensate for the lack of the extended speech, we propose to combine the spectral folding method and GMM transformation method, which is a statistical method to reconstruct wideband speech. The reconstructed wideband speech showed that the absent frequency components was filled up with relatively low spectral mismatch. According to the subjective speech quality evaluations, the proposed method was preferred to other methods.

  • PDF

RPCA-GMM for Speaker Identification (화자식별을 위한 강인한 주성분 분석 가우시안 혼합 모델)

  • 이윤정;서창우;강상기;이기용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.519-527
    • /
    • 2003
  • Speech is much influenced by the existence of outliers which are introduced by such an unexpected happenings as additive background noise, change of speaker's utterance pattern and voice detection errors. These kinds of outliers may result in severe degradation of speaker recognition performance. In this paper, we proposed the GMM based on robust principal component analysis (RPCA-GMM) using M-estimation to solve the problems of both ouliers and high dimensionality of training feature vectors in speaker identification. Firstly, a new feature vector with reduced dimension is obtained by robust PCA obtained from M-estimation. The robust PCA transforms the original dimensional feature vector onto the reduced dimensional linear subspace that is spanned by the leading eigenvectors of the covariance matrix of feature vector. Secondly, the GMM with diagonal covariance matrix is obtained from these transformed feature vectors. We peformed speaker identification experiments to show the effectiveness of the proposed method. We compared the proposed method (RPCA-GMM) with transformed feature vectors to the PCA and the conventional GMM with diagonal matrix. Whenever the portion of outliers increases by every 2%, the proposed method maintains almost same speaker identification rate with 0.03% of little degradation, while the conventional GMM and the PCA shows much degradation of that by 0.65% and 0.55%, respectively This means that our method is more robust to the existence of outlier.

On-Road Car Detection System Using VD-GMM 2.0 (차량검출 GMM 2.0을 적용한 도로 위의 차량 검출 시스템 구축)

  • Lee, Okmin;Won, Insu;Lee, Sangmin;Kwon, Jangwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2291-2297
    • /
    • 2015
  • This paper presents a vehicle detection system using the video as a input image what has moving of vehicles.. Input image has constraints. it has to get fixed view and downward view obliquely from top of the road. Road detection is required to use only the road area in the input image. In introduction, we suggest the experiment result and the critical point of motion history image extraction method, SIFT(Scale_Invariant Feature Transform) algorithm and histogram analysis to detect vehicles. To solve these problem, we propose using applied Gaussian Mixture Model(GMM) that is the Vehicle Detection GMM(VDGMM). In addition, we optimize VDGMM to detect vehicles more and named VDGMM 2.0. In result of experiment, each precision, recall and F1 rate is 9%, 53%, 15% for GMM without road detection and 85%, 77%, 80% for VDGMM2.0 with road detection.

A Study on the Macroeconomic Effects of Trade Insurance Using Dynamic Panel Models (동태적 패널모형을 통한 무역보험의 거시경제효과 연구)

  • Nam, Sang Wook
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.61
    • /
    • pp.165-190
    • /
    • 2014
  • The purpose of this study is to measure the trade insurance's macroeconomic effects by analyzing the causality between major economic variables(GDP per capita, market interest rate, inflation, unemployment rate, exchange rate) and trade insurance variable. I conducted empirical analyses using First-difference GMM(Generalized Method of Moments), System GMM and Panel-VAR Model, with panel data from 11 countries(Korea, United States, Japan, BRICs, Indonesia, Singapore, Hong Kong, Vietnam) between 1992 and 2011. There are several important findings. Above all, Trade insurance is positively and significantly related to GDP. This results show that trade insurance serves to increase economic growth. In other words, trade insurance leads to economic growth by helping increase GDP per capita. Especially, trade insurance negatively related to unemployment rate, it is for sure that trade insurance contribute to decrease unemployment rate. And trade insurance helps control of inflation. It is also confirmed that trade insurance contributes to price stability, which in turn serves to stabilize the overall economy. And this research finds as uncertainty in the market increases, seen it as increase of exchange rate, increasing trade insurance supply is stabilize the exchange rate.

  • PDF

Enhancement Voiced/Unvoiced Sounds Classification for 3GPP2 SMV Employing GMM (3GPP2 SMV의 실시간 유/무성음 분류 성능 향상을 위한 Gaussian Mixture Model 기반 연구)

  • Song, Ji-Hyun;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.111-117
    • /
    • 2008
  • In this paper, we propose an approach to improve the performance of voiced/unvoiced (V/UV) decision under background noise environments for the selectable mode vocoder (SMV) of 3GPP2. We first present an effective analysis of the features and the classification method adopted in the SMV. And then feature vectors which are applied to the GMM are selected from relevant parameters of the SMV for the efficient voiced/unvoiced classification. For the purpose of evaluating the performance of the proposed algorithm, different experiments were carried out under various noise environments and yields better results compared with the conventional scheme of the SMV.

A nonlinear transformation methods for GMM to improve over-smoothing effect

  • Chae, Yi Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.182-187
    • /
    • 2014
  • We propose nonlinear GMM-based transformation functions in an attempt to deal with the over-smoothing effects of linear transformation for voice processing. The proposed methods adopt RBF networks as a local transformation function to overcome the drawbacks of global nonlinear transformation functions. In order to obtain high-quality modifications of speech signals, our voice conversion is implemented using the Harmonic plus Noise Model analysis/synthesis framework. Experimental results are reported on the English corpus, MOCHA-TIMIT.

Implementation and Enhancement of GMM Face Recognition System using Flatness Measure (평탄도 측정을 이용한 GMM 얼굴인식기 구현 및 성능향상)

  • 천영하;고대영;김진영;백성준
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2004-2007
    • /
    • 2003
  • This paper describes a method of performance enhancement using Flatness Mesure(FM) for the Gaussian Mixture Model(GMM) face recognition systems. Using this measure we discard the frames having low information before training and test. As the result, the performance increases about 9% in the lower mixtures and calculation burden is decreased. As well, the recognition error rate is decreased under the illumination change surroundings. We use the 2D DCT coefficients lot face feature vectors and experiments are carried out on the Olivetti Research Laboratory (ORL) face database.

  • PDF

SVM Based Speaker Verification Using Sparse Maximum A Posteriori Adaptation

  • Kim, Younggwan;Roh, Jaeyoung;Kim, Hoirin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.5
    • /
    • pp.277-281
    • /
    • 2013
  • Modern speaker verification systems based on support vector machines (SVMs) use Gaussian mixture model (GMM) supervectors as their input feature vectors, and the maximum a posteriori (MAP) adaptation is a conventional method for generating speaker-dependent GMMs by adapting a universal background model (UBM). MAP adaptation requires the appropriate amount of input utterance due to the number of model parameters to be estimated. On the other hand, with limited utterances, unreliable MAP adaptation can be performed, which causes adaptation noise even though the Bayesian priors used in the MAP adaptation smooth the movements between the UBM and speaker dependent GMMs. This paper proposes a sparse MAP adaptation method, which is known to perform well in the automatic speech recognition area. By introducing sparse MAP adaptation to the GMM-SVM-based speaker verification system, the adaptation noise can be mitigated effectively. The proposed method utilizes the L0 norm as a regularizer to induce sparsity. The experimental results on the TIMIT database showed that the sparse MAP-based GMM-SVM speaker verification system yields a 42.6% relative reduction in the equal error rate with few additional computations.

  • PDF

People Detection Algorithm in the Beach (해변에서의 사람 검출 알고리즘)

  • Choi, Yu Jung;Kim, Yoon
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.5
    • /
    • pp.558-570
    • /
    • 2018
  • Recently, object detection is a critical function for any system that uses computer vision and is widely used in various fields such as video surveillance and self-driving cars. However, the conventional methods can not detect the objects clearly because of the dynamic background change in the beach. In this paper, we propose a new technique to detect humans correctly in the dynamic videos like shores. A new background modeling method that combines spatial GMM (Gaussian Mixture Model) and temporal GMM is proposed to make more correct background image. Also, the proposed method improve the accuracy of people detection by using SVM (Support Vector Machine) to classify people from the objects and KCF (Kernelized Correlation Filter) Tracker to track people continuously in the complicated environment. The experimental result shows that our method can work well for detection and tracking of objects in videos containing dynamic factors and situations.