• Title/Summary/Keyword: GMM method

Search Result 301, Processing Time 0.027 seconds

A PCA-based MFDWC Feature Parameter for Speaker Verification System (화자 검증 시스템을 위한 PCA 기반 MFDWC 특징 파라미터)

  • Hahm Seong-Jun;Jung Ho-Youl;Chung Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.36-42
    • /
    • 2006
  • A Principal component analysis (PCA)-based Mel-Frequency Discrete Wavelet Coefficients (MFDWC) feature Parameters for speaker verification system is Presented in this Paper In this method, we used the 1st-eigenvector obtained from PCA to calculate the energy of each node of level that was approximated by. met-scale. This eigenvector satisfies the constraint of general weighting function that the squared sum of each component of weighting function is unity and is considered to represent speaker's characteristic closely because the 1st-eigenvector of each speaker is fairly different from the others. For verification. we used Universal Background Model (UBM) approach that compares claimed speaker s model with UBM on frame-level. We performed experiments to test the effectiveness of PCA-based parameter and found that our Proposed Parameters could obtain improved average Performance of $0.80\%$compared to MFCC. $5.14\%$ to LPCC and 6.69 to existing MFDWC.

Laryngeal Cancer Screening using Cepstral Parameters (켑스트럼 파라미터를 이용한 후두암 검진)

  • 이원범;전경명;권순복;전계록;김수미;김형순;양병곤;조철우;왕수건
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.14 no.2
    • /
    • pp.110-116
    • /
    • 2003
  • Background and Objectives : Laryngeal cancer discrimination using voice signals is a non-invasive method that can carry out the examination rapidly and simply without giving discomfort to the patients. n appropriate analysis parameters and classifiers are developed, this method can be used effectively in various applications including telemedicine. This study examines voice analysis parameters used for laryngeal disease discrimination to help discriminate laryngeal diseases by voice signal analysis. The study also estimates the laryngeal cancer discrimination activity of the Gaussian mixture model (GMM) classifier based on the statistical modelling of voice analysis parameters. Materials and Methods : The Multi-dimensional voice program (MDVP) parameters, which have been widely used for the analysis of laryngeal cancer voice, sometimes fail to analyze the voice of a laryngeal cancer patient whose cycle is seriously damaged. Accordingly, it is necessary to develop a new method that enables an analysis of high reliability for the voice signals that cannot be analyzed by the MDVP. To conduct the experiments of laryngeal cancer discrimination, the authors used three types of voices collected at the Department of Otorhinorlaryngology, Pusan National University Hospital. 50 normal males voice data, 50 voices of males with benign laryngeal diseases and 105 voices of males laryngeal cancer. In addition, the experiment also included 11 voices data of males with laryngeal cancer that cannot be analyzed by the MDVP, Only monosyllabic vowel /a/ was used as voice data. Since there were only 11 voices of laryngeal cancer patients that cannot be analyzed by the MDVP, those voices were used only for discrimination. This study examined the linear predictive cepstral coefficients (LPCC) and the met-frequency cepstral coefficients (MFCC) that are the two major cepstrum analysis methods in the area of acoustic recognition. Results : The results showed that this met frequency scaling process was effective in acoustic recognition but not useful for laryngeal cancer discrimination. Accordingly, the linear frequency cepstral coefficients (LFCC) that excluded the met frequency scaling from the MFCC was introduced. The LFCC showed more excellent discrimination activity rather than the MFCC in predictability of laryngeal cancer. Conclusion : In conclusion, the parameters applied in this study could discriminate accurately even the terminal laryngeal cancer whose periodicity is disturbed. Also it is thought that future studies on various classification algorithms and parameters representing pathophysiology of vocal cords will make it possible to discriminate benign laryngeal diseases as well, in addition to laryngeal cancer.

  • PDF

Identification of shear layer at river confluence using (RGB) aerial imagery (RGB 항공 영상을 이용한 하천 합류부 전단층 추출법)

  • Noh, Hyoseob;Park, Yong Sung
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.553-566
    • /
    • 2021
  • River confluence is often characterized by shear layer and the associated strong mixing. In natural rivers, the main channel and its tributary can be separated by the shear layer using contrasting colors. The shear layer can be easily observed using aerial images from satellite or unmanned aerial vehicles. This study proposes a low-cost identification method extracting geographic features of the shear layer using RGB aerial image. The method consists of three stages. At first, in order to identify the shear layer, it performs image segmentation using a Gaussian mixture model and extracts the water bodies of the main channel and tributary. Next, the self-organizing map simplifies the flow line of the water bodies into the 1-dimensional curve grid. After that, the curvilinear coordinate transformation is performed using the water body pixels and the curve grid. As a result, the shear layer identification method was successfully applied to the confluence between Nakdong River and Nam River to extract geometric shear layer features (confluence angle, upstream- and downstream- channel widths, shear layer length, maximum shear layer thickness).

Development and Analysis of COMS AMV Target Tracking Algorithm using Gaussian Cluster Analysis (가우시안 군집분석을 이용한 천리안 위성의 대기운동벡터 표적추적 알고리듬 개발 및 분석)

  • Oh, Yurim;Kim, Jae Hwan;Park, Hyungmin;Baek, Kanghyun
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.531-548
    • /
    • 2015
  • Atmospheric Motion Vector (AMV) from satellite images have shown Slow Speed Bias (SSB) in comparison with rawinsonde. The causes of SSB are originated from tracking, selection, and height assignment error, which is known to be the leading error. However, recent works have shown that height assignment error cannot be fully explained the cause of SSB. This paper attempts a new approach to examine the possibility of SSB reduction of COMS AMV by using a new target tracking algorithm. Tracking error can be caused by averaging of various wind patterns within a target and changing of cloud shape in searching process over time. To overcome this problem, Gaussian Mixture Model (GMM) has been adopted to extract the coldest cluster as target since the shape of such target is less subject to transformation. Then, an image filtering scheme is applied to weigh more on the selected coldest pixels than the other, which makes it easy to track the target. When AMV derived from our algorithm with sum of squared distance method and current COMS are compared with rawindsonde, our products show noticeable improvement over COMS products in mean wind speed by an increase of $2.7ms^{-1}$ and SSB reduction by 29%. However, the statistics regarding the bias show negative impact for mid/low level with our algorithm, and the number of vectors are reduced by 40% relative to COMS. Therefore, further study is required to improve accuracy for mid/low level winds and increase the number of AMV vectors.

The Relationship between Financial Constraints and Investment Activities : Evidenced from Korean Logistics Firms (우리나라 물류기업의 재무제약 수준과 투자활동과의 관련성에 관한 연구)

  • Lee, Sung-Yhun
    • Journal of Korea Port Economic Association
    • /
    • v.40 no.2
    • /
    • pp.65-78
    • /
    • 2024
  • This study investigates the correlation between financial constraints and investment activities in Korean logistics firms. A sample of 340 companies engaged in the transportation sector, as per the 2021 KSIC, was selected for analysis. Financial data obtained from the DART were used to compile a panel dataset spanning from 1996 to 2021, totaling 6,155 observations. The research model was validated, and tests for heteroscedasticity and autocorrelation in the error terms were conducted considering the panel data structure. The relationship between investment activities in the previous period and current investment activities was analyzed using panel Generalized Method of Moments(GMM). The validation results of the research indicate that Korean logistics firms tend to increase investment activities as their level of financial constraints improves. Specifically, a positive relationship between the level of financial constraints and investment activities was consistently observed across all models. These findings suggest that investment decision-making varies based on the financial constraints faced by companies, aligning with previous research indicating that investment activities of constrained firms are subdued. Moreover, while the results from the model examining whether investment activities in the previous period affect current investment activities indicated an influence of investment activities from the previous period on current investment activities, the investment activities from two periods ago did not show a significant relationship with current investment activities. Among the control variables, firm size and cash flow variables exhibited positive relationships, while debt size and asset diversification variables showed negative relationships. Thus, larger firm size and smoother cash flows were associated with more proactive investment activities, while high debt levels and extensive asset diversification appeared to constrain investment activities in logistics companies. These results interpret that under financial constraints, internal funding sources such as cash flows exhibit positive relationships, whereas external capital sources such as debt demonstrate negative relationships, consistent with empirical findings from previous research.

Performance Improvement of Speaker Recognition by MCE-based Score Combination of Multiple Feature Parameters (MCE기반의 다중 특징 파라미터 스코어의 결합을 통한 화자인식 성능 향상)

  • Kang, Ji Hoon;Kim, Bo Ram;Kim, Kyu Young;Lee, Sang Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.679-686
    • /
    • 2020
  • In this thesis, an enhanced method for the feature extraction of vocal source signals and score combination using an MCE-Based weight estimation of the score of multiple feature vectors are proposed for the performance improvement of speaker recognition systems. The proposed feature vector is composed of perceptual linear predictive cepstral coefficients, skewness, and kurtosis extracted with lowpass filtered glottal flow signals to eliminate the flat spectrum region, which is a meaningless information section. The proposed feature was used to improve the conventional speaker recognition system utilizing the mel-frequency cepstral coefficients and the perceptual linear predictive cepstral coefficients extracted with the speech signals and Gaussian mixture models. In addition, to increase the reliability of the estimated scores, instead of estimating the weight using the probability distribution of the convectional score, the scores evaluated by the conventional vocal tract, and the proposed feature are fused by the MCE-Based score combination method to find the optimal speaker. The experimental results showed that the proposed feature vectors contained valid information to recognize the speaker. In addition, when speaker recognition is performed by combining the MCE-based multiple feature parameter scores, the recognition system outperformed the conventional one, particularly in low Gaussian mixture cases.

A New Face Tracking and Recognition Method Adapted to the Environment (환경에 적응적인 얼굴 추적 및 인식 방법)

  • Ju, Myung-Ho;Kang, Hang-Bong
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.385-394
    • /
    • 2009
  • Face tracking and recognition are difficult problems because the face is a non-rigid object. The main reasons for the failure to track and recognize the faces are the changes of a face pose and environmental illumination. To solve these problems, we propose a nonlinear manifold framework for the face pose and the face illumination normalization processing. Specifically, to track and recognize a face on the video that has various pose variations, we approximate a face pose density to single Gaussian density by PCA(Principle Component Analysis) using images sampled from training video sequences and then construct the GMM(Gaussian Mixture Model) for each person. To solve the illumination problem for the face tracking and recognition, we decompose the face images into the reflectance and the illuminance using the SSR(Single Scale Retinex) model. To obtain the normalized reflectance, the reflectance is rescaled by histogram equalization on the defined range. We newly approximate the illuminance by the trained manifold since the illuminance has almost variations by illumination. By combining these two features into our manifold framework, we derived the efficient face tracking and recognition results on indoor and outdoor video. To improve the video based tracking results, we update the weights of each face pose density at each frame by the tracking result at the previous frame using EM algorithm. Our experimental results show that our method is more efficient than other methods.

Information in the Implied Volatility Curve of Option Prices and Implications for Financial Distribution Industry (옵션 내재 변동성곡선의 정보효과와 금융 유통산업에의 시사점)

  • Kim, Sang-Su;Liu, Won-Suk;Son, Sam-Ho
    • Journal of Distribution Science
    • /
    • v.13 no.5
    • /
    • pp.53-60
    • /
    • 2015
  • Purpose - The purpose of this paper is to shed light on the importance of the slope and curvature of the volatility curve implied in option prices in the KOSPI 200 options index. A number of studies examine the implied volatility curve, however, these usually focus on cross-sectional characteristics such as the volatility smile. Contrary to previous studies, we focus on time-series characteristics; we investigate correlation dynamics among slope, curvature, and level of the implied volatility curve to capture market information embodied therein. Our study may provide useful implications for investors to utilize current market expectations in managing portfolios dynamically and efficiently. Research design, data, and methodology - For our empirical purpose, we gathered daily KOSPI200 index option prices executed at 2:50 pm in the Korean Exchange distribution market during the period of January 2, 2004 and January 31, 2012. In order to measure slope and curvature of the volatility curve, we use approximated delta distance; the slope is defined as the difference of implied volatilities between 15 delta call options and 15 delta put options; the curvature is defined as the difference between out-of-the-money (OTM) options and at-the-money (ATM) options. We use generalized method of moments (GMM) and the seemingly unrelated regression (SUR) method to verify correlations among level, slope, and curvature of the implied volatility curve with statistical support. Results - We find that slope as well as curvature is positively correlated with volatility level, implying that put option prices increase in a downward market. Further, we find that curvature and slope are positively correlated; however, the relation is weakened at deep moneyness. The results lead us to examine whether slope decreases monotonically as the delta increases, and it is verified with statistical significance that the deeper the moneyness, the lower the slope. It enables us to infer that when volatility surges above a certain level due to any tail risk, investors would rather take long positions in OTM call options, expecting market recovery in the near future. Conclusions - Our results are the evidence of the investor's increasing hedging demand for put options when downside market risks are expected. Adding to this, the slope and curvature of the volatility curve may provide important information regarding the timing of market recovery from a nosedive. For financial product distributors, using the dynamic relation among the three key indicators of the implied volatility curve might be helpful in enhancing profit and gaining trust and loyalty. However, it should be noted that our implications are limited since we do not provide rigorous evidence for the predictability power of volatility curves. Meaning, we need to verify whether the slope and curvature of the volatility curve have statistical significance in predicting the market trough. As one of the verifications, for instance, the performance of trading strategy based on information of slope and curvature could be tested. We reserve this for the future research.

Information Flows, Differences of Opinion, and Trading Volumes : An Empirical Study (정보흐름, 의견차이, 거래량에 관한 실증연구)

  • Rhieu, Sang-Yup
    • Korean Business Review
    • /
    • v.12
    • /
    • pp.119-138
    • /
    • 1999
  • In this study, we empirically investigate the relations between trading volumes and our proxies for information flows and differences of opnion. Econometric methods to analyze the relations in the equity and KOSPI 200 futures markets include Generalized Method of Moment(GMM) and Generalized Autoregressive Conditional Heteroscedasticity(GARCH) models. Major findings from our empirical analyses are summarized as follows; (i) Trading volume in both the equity and KOSPI 200 futures markets varies positively with proxies for information flows. We find that trading volumes in both markets are closely related to firm-specific information rather than market-wide information. (ii) Trading volumes in the equity and KOSPI 200 futures market have positive relations with our proxies for differences of opinion. (iii) Day-of-the-week effect is clear in both markets. Trading volumes in both the equity and KOSPI 200 futures markets tend to be relatively low early and late in the week. (IV) Futures contract life-cycle effect is clear. In other words, futures trading volume increses in the period around contract expiration. (V) In addition, ARCH effect on trading volumes is reported significant enough to take into account. The disturbance of trading volumes in both markets seem to be conditional heteroscedastic.

  • PDF

A Small-area Hardware Implementation of EGML-based Moving Object Detection Processor (EGML 기반 이동객체 검출 프로세서의 저면적 하드웨어 구현)

  • Sung, Mi-ji;Shin, Kyung-wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2213-2220
    • /
    • 2017
  • This paper proposes an efficient approach for hardware implementation of moving object detection (MOD) processor using effective Gaussian mixture learning (EGML)-based background subtraction method. Arithmetic units used in background generation were implemented using LUT-based approximation to reduce hardware complexity. Hardware resources used for both background subtraction and Gaussian probability density calculation were shared. The MOD processor was verified by FPGA-in-the-loop simulation using MATLAB/Simulink. The MOD performance was evaluated by using six types of video defined in IEEE CDW-2014 dataset, which resulted the average of recall value of 0.7700, the average of precision value of 0.7170, and the average of F-measure value of 0.7293. The MOD processor was implemented with 882 slices and block RAM of $146{\times}36kbits$ on Virtex5 FPGA, resulting in 60% hardware reduction compared to conventional design based on EGML. It was estimated that the MOD processor could operate with 75 MHz clock, resulting in real-time processing of $800{\times}600$ video with a frame rate of 39 fps.