• Title/Summary/Keyword: GMA Welding Process

Search Result 114, Processing Time 0.026 seconds

A Study on a Visual Sensor System for Weld Seam Tracking in Robotic GMA Welding (GMA 용접로봇용 용접선 시각 추적 시스템에 관한 연구)

  • 김재웅;김동호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.643-646
    • /
    • 2000
  • In this study, we constructed a preview-sensing visual sensor system for weld seam tracking in real time in GMA welding. A sensor part consists of a CCD camera, a band-pass filter, a diode laser system with a cylindrical lens, and a vision board for inter frame process. We used a commercialized robot system which includes a GMA welding machine. To extract the weld seam we used a inter frame process in vision board from that we could remove the noise due to the spatters and fume in the image. Since the image was very reasonable by using the inter frame process, we could use the simplest way to extract the weld seam from the image, such as first differential and central difference method. Also we used a moving average method to the successive position data of weld seam for reducing the data fluctuation. In experiment the developed robot system with visual sensor could be able to track a most popular weld seam, such as a fillet-joint, a V-groove, and a lap-joint of which weld seam include planar and height directional variation.

  • PDF

Application of Neural Network for Process Control in GMA Welding (GMA용접에서 공정 제어를 위한 최적 신경회로망 적용)

  • 김일수;박창언;손준식;김인주;이승찬;김학형
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.21-23
    • /
    • 2004
  • 파이프용접에서 특정용접을 하기 위한 최적의 용접조건 선정하는 작업은 대개 많은 시간과 비용을 요구한다. 최근에 인공지능(AI) 기술을 이용하여 용접변수를 결정하기 위해서는 생산성, 용접결함 등 여러 가지 요소를 고려해야 한다고 주장한다. (중략)

  • PDF

Development of models for evaluating the short-circuiting arc phenomena of gas metal arc welding (GMA 용접의 단락이행 아크 현상의 평가를 위한 모델 개발)

  • 김용재;이세헌;강문진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.454-457
    • /
    • 1997
  • The purpose of this study is to develop an optimal model, using existing models, that is able to estimate the amount of spatter utilizing artificial neural network in the short circuit transfer mode of gas metal arc (GMA) welding. The amount of spatter generated during welding can become a barometer which represents the process stability of metal transfer in GMA welding, and it depends on some factors which constitute a periodic waveforms of welding current and arc voltage in short circuit GMA welding. So, the 12 factors, which could express the characteristics for the waveforms, and the amount of spatter are used as input and output variables of the neural network, respectively. Two neural network models to estimate the amount of spatter are proposed: A neural network model, where arc extinction is not considered, and a combined neural network model where it is considered. In order to reduce the calculation time it take to produce an output, the input vector and hidden layers for each model are optimized using the correlation coefficients between each factor and the amount of spattcr. The est~mation performance of each optimized model to the amount of spatter IS assessed and compared to the est~mation performance of the model proposed by Kang. Also, through the evaluation for the estimation performance of each optimized model, it is shown that the combined neural network model can almost perfectly predict the amount of spatter.

  • PDF

Effect of the Wear of Contact Tips on the Weld beads made by GMAW Process (GMA용접 공정에서 콘택트팁 마모가 용접비드에 미치는 영향)

  • Koh, Jin-Hyun;Kim, Nam-Hoon;Kim, Hwan-Tea;Hwang, Yong-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2019-2024
    • /
    • 2011
  • The effect of the wear of contact tips on the weld beads made by a Gas Metal Arc Welding(GMAW) process was studied. In order to correlate between the wear of tips and beads, the droplet transfer was investigated by a high speed camera and waveform shapes, and the condition of beads was examined by a low magnification camera as well. It was found that the worn contact tip had caused to shift the contact point between the tip and the welding wire which resulted in nonuniform beads. In addition, the worn contact tip had changed the welding resistance and brought about the arc instability during welding.

Control of Weld Pool Size in GMA Welding Process Using Neural Networks (신경회로를 이용한 GMA 용접 공정에서의 용융지의 크기 제어)

  • 임태균;조형석;부광석
    • Journal of Welding and Joining
    • /
    • v.12 no.1
    • /
    • pp.59-72
    • /
    • 1994
  • This paper presents an on-line quality monitoring and control method to obtain a uniform weld quality in gas metal arc welding (GMAW) processes. The geometrical parameters of the weld pool such as the top bead width and the penetration depth plus half back width are utilized to assess the integrity of the weld quality. Since a good quality weld is characterized by a relatively high depth-to-width ratio in its dimensions, the second geometrical parameter is regulated to a desired one. The monitoring variables are the surface temperatures measured at various points on the top surface of the weldment which are strongly related to the formation of the weld pool The relationship between the measured temperatures and the weld pool size is implemented on the multilayer perceptrons which are powerful for realization of complex mapping characteristics through training by samples. For on-line quality monitoring and control, it is prerequisite to estimate the weld pool sizes in the region of transient states. For this purpose, the time history of the surface temperatures is used as the input to the neural estimator. The control purpose is to obtain a uniform weld quality. In this research, the weld pool size is directly regulated to a desired one. The proposed controller is composed of a neural pool size estimator, a neural feedforward controller and a conventional feedback controller. The pool size estimator predicts the weld pool size under growing. The feedforward controller compensates for the nonlinear characteristics of the welding process. A series of simulation studies shows that the proposed control method improves the overall system response in the presence of changes in torch travel speed during GMA welding and guarantees the uniform weld quality.

  • PDF

A Experiment Study for Welding Optimization of fillet Welded Structure (필릿 용접 구조물의 용접 최적화률 위한 실험적 연구)

  • Kim, Il-Soo;Na, Hyun-Ho;Kim, Ji-Sun;Lee, Ji-Hye
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1054-1061
    • /
    • 2011
  • GMA welding process is a production process to improve productivity for the provision of higher quality of material, These includs numerous process variables that could affect welding quality, productivity and cost savings. Recently, the welding part of construction equipment had frequent failure of major components in the welding part of each subsidiary material due to shock which is very poor according to the welding part. Therefore, the implementation of sound welding procedure is the most decisive factor for the reliability of construction machinery. The data generated through experimens conducted in this study has validated its effectiveness for the optimization of bead geometry and process variables is presented. The criteria to control the process parameters, to achieve a healthy bead geometry. This study has developed mathematical models and algorithms to predict or control the bead geometry in GMA fillet welding process.

Effect of Contact-tube to Work Distance on the Melting Rate of GMA Welding (GMA 용접의 용착속도에 미치는 Contact-tube와 모재간 거리의 영향)

  • 경규담;이정헌;천홍정;박병희;강봉룡;김희진
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.87-94
    • /
    • 1996
  • It has been well known in GMA welding process that wire feeding speed (WFS) or deposition rate increases linealy with the increase of wire extension. In this investigation, however, such an well-known relationship was .reconsidered in terms of contact-tube to work distance (CTWD) instead of wire extension. To verify the proposed relationship between WFS and CTWD, bead-on-plate welding was performed with various CTWDs in the range of 15∼35mm under the condition of near-constant voltage and current As expected, the test results showed an excellent linear relation between WFS and CTWD. Furthermore, the value of the slope turned out to be quite similar to those of previous investigators obtained either theoretically or experimentally through the Precise measurement of electrode extension. Present result also demonstred that the increase of CTWD could be very practical measure for increaring deposition rate without any increase of heat input Depending on the tip recess the practical maximum of CTWD was appeared to be limited somewhere in 25∼30mm mainly due to the entrappment of porocity.

  • PDF

A Study on Temperature Distribution and Bead Geometry in GMA Welding (GMA 용접에 온도분포와 비드형상에 관한 연구)

  • 김일수;박창언;송창재;정영재;김동규
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.111-116
    • /
    • 1999
  • Over the last few years, there has been a growing interest in quantitative representation of heat transfer and fluid flow phenomena in weld pools in order to relate the processing conditions to the quality of the weldment produced and to use this information for the optimization and robotization of the welding process. Normally, a theoretical model offers a powerful alternative to estimate the important input parameters and to calculate the effects of varying any of parameters. To solve this problem, a transient 2D(two-dimensional) heat conduction and a transient 2D axisymmetric heat and fluid model were developed for determining weld bead geometry and temperature distribution for the GMA(Gas Metal Arc) welding process. The equation was solved using a general thermofluid-mechanics computer program, PHOENICS code, which is based on the SIMPLE algorithm. The simulation results showed that the calculated bead geometry from two developed models reasonably agree with the experiment result.

  • PDF