• Title/Summary/Keyword: GM plants

Search Result 91, Processing Time 0.025 seconds

Current status on the development of detection methods for genetically modified plants (유전자변형식물의 검정기술 개발 현황)

  • Kim, Jae-Hwan;Kim, Young-Rok;Kim, Hae-Yeong
    • Journal of Plant Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.143-150
    • /
    • 2011
  • Since the first commercial GM plant, the FlavrSavr tomato, authorized in 1994, more than 140 GM plants were authorized for marketing globally. For the authorization and labelling of GM plants, the detection methods for genes introduced and proteins expressed in GM plants were developed qualitatively and quantitatively. This review presented the detection methods, conventional PCR, multiplex PCR and real-time PCR, for soybean, maize, canola and cotton as the dominant GM plants. Also, microarray assay and nanotechnology as new approaches for detection methods for GM plants were investigated.

Appearance/Instance of Genetically Modified Maize at Grain Receiving Harbors and Along Transportation Routes in Korea

  • Han, Sung Min;Kim, Do Young;Uddin, Md. Romij;Hwang, Ki Seon;Lee, Bumkyu;Kim, Chang-Gi;Park, Kee Woong
    • Weed & Turfgrass Science
    • /
    • v.3 no.3
    • /
    • pp.221-224
    • /
    • 2014
  • Genetically modified (GM) crops are not permitted to be cultivated in Korea, but can only be imported as food or feed purposes. The import of GM crops has sharply increased in recent years, thus raising concerns with regard to the unintentional escape of these crops during transport and manufacturing as well as the subsequent contamination of local, non-GM plants. Hence, monitoring of GM crops was studied in or outside of grain receiving ports as well as from feed-processing plants in Korea during July 2008. We observed spilled maize grains and established plants primarily in storage facilities that are exposed around the harbors and near transportation routes of the feed-processing areas. Based on the PCR analyses, a total of 17 GM maize plants and 11 seeds were found among the samples. In most cases, the established maize plants found in this study were at the vegetative stage and thus failed to reach the reproductive stage. This study concludes that, in order to prevent a genetic admixture in the local environment for GM crops or seeds, frequent monitoring work and proper action should be taken.

Commercialization of Genetically Modified Ornamental Plants

  • Chandler Stephen F.
    • Journal of Plant Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.69-77
    • /
    • 2003
  • The ornamental industry encompasses cut flower, pot plant, turfgrass and nursery stock production and is an important part of the agricultural sector. As internationally traded commodities, cut flowers and plants are an integral part of the economy of a number of developing countries in South America, the Caribbean and Africa. Genetic modification (GM) is a tool with great potential to the ornamental horticulture industry. The rapid progress in our knowledge of plant molecular biology can accelerate the breeding ornamental plants using recombinant DNA technology techniques. Not only is there the possibility of creating new, novel products the driver of the industry but also the potential to develop varieties requiring less chemical and energy inputs. As an important non-food agricultural sector the use of genetically modified (GM) ornamental crops may also be ideal for the intensive farming necessary to generate pharmaceuticals and other useful products in GM plants. To date, there are only a few ornamental GM products in development and only one, a carnation genetically modified for flower colour, in the marketplace. International Flower Developments, a joint venture between Florigene Ltd. in Australia and Suntory Ltd. of Japan, developed the GM carnations. These flowers are currently on sale in USA, Japan and Australia. The research, development and commercialization of these products are summarized. The long term prospects for ornamental GM products, like food crops, will be determined by the regulatory environment, and the acceptance of GM products in the marketplace. These critical factors will be analysed in the context of the current legislative environment, and likely public and industry opinion towards ornamental genetically modified organisms (GMO's).

Commercialization of Genetically Modified Ornamental Plants

  • Chandler, Stephen F.
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2003.04a
    • /
    • pp.39-48
    • /
    • 2003
  • The ornamental industry encompasses cut flower, pot plant, turfgrass and nursery stock production and is an important part of the agricultural sector. As internationally traded commodities, cut flowers and plants are an integral part of the economy of a number of developing countries in South America, the Caribbean and Africa. Genetic modification (GM) is a tool with great potential to the ornamental horticulture industry. The rapid progress in our knowledge of plant molecular biology can accelerate the breeding ornamental plants using recombinant DNA technology techniques. Not only is there the possibility of creating new, novel products the driver of the industry but also the potential to develop varieties requiring less chemical and energy inputs. As an important non-food agricultural sector the use of genetically modified (GM) ornamental crops may also be ideal for the intensive farming necessary to generate pharmaceuticals and other useful products in GM plants. To date, there are only a few ornamental GM products in development and only one, a carnation genetically modified for flower colour, in the marketplace. International Flower Developments, a joint venture between Florigene Ltd. in Australia and Suntory Ltd.of Japan, developed the GM carnations. These flowers are currently on sale in USA, Japan and Australia. The research, development and commercialisation of these products are summarised. The long term prospects for ornamental GM products, like food crops, will be determined by the regulatory environment, and the acceptance of GM products in the marketplace. These critical factors will be analysed in the context of the current legislative environment, and likely public and industry opinion towards ornamental genetically modified organisms (GMO's).

  • PDF

Attitudes toward Genetically Modified Foods and Willingness to Purchase Them among Housewives (주부의 유전자재조합식품의 태도와 구매의사)

  • 김문정;김혜선
    • Journal of Families and Better Life
    • /
    • v.21 no.2
    • /
    • pp.19-30
    • /
    • 2003
  • In this study, housewives' attitudes toward genetically modified foods (GM foods) and their willingness to purchase GM foods were examined. The findings of this study could provide useful information for consumer education and consumer policy development regarding GM foods. The specific purposes of this study were: (1) to examine consumers' attitudes toward GM foods, (2) to analyze the effect of the perception of GM foods and demographic variables on consumers' attitudes toward GM foods, and (3) to analyze the effect of the perception of GM foods and demographic variables on consumers' willingness to purchase GM foods. The questionnaire used in the survey was constructed by the author, based on existing literature. The survey was conducted with 1,100 housewives, and 723 of the completed survey forms were used in the final analysis. Frequencies, percentages, means, standard deviation, t-tests, ANOVA, Duncan-test, Pearson's Correlation, factor analysis, and discriminant analysis were employed for data analysis methods. Major findings are: (1) Consumers' attitudes toward GM foods consist of three factors, that are, attitude regarding potential danger, attitude regarding the use of GM technique on plants, and attitude regarding the use of GM technique on animals. (2) Consumers with a higher level of education tend to perceive GM food as more dangerous, whereas consumers with a lower level of education tend to accept more the use of GM technique on plants. (3) Consumers who tend not to consider GM foods as dangerous, and those who acknowledged benefits in using GM technique on plants are more willing to buy GM foods.

Current Research Status on the Development of Genetically Modified Plants in Korea (유전자변형식물의 국내 연구 현황)

  • Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • In an attempt to evaluate the current research status of genetically modified (GM) plants, the scientific research publications in Korea as well as in international SCI journals were screened. About 190 research articles related to the development of GM plants were searched from 10 different domestic journals in the last 12 years (Jan. 1990 to Sept. 2002), The researches in 65 articles were carried out with tobacco plant, 20 with rice, 19 with potatoes, and less then 9 articles from each other plant species, respectively, In total, 38 different plant species were being subjected for the development of GM plants. In particular, there was only one article for each major staple grains such as wheat, barley, soybean, and maize. In more than 47% of total published articles, scientists mainly focused on the basic research such as developing transformation system (46 articles), gene expression study in transgenic plants (34), and vector constructions (10). In addition, 28 articles which main authors are Korean scientists were searched from 11 different international SCI journals. Again, major plants for GM research were tobacco (10) and rice (7). More than 50% of published articles were focused on the basic research, gene expression study with transgenic plants (16). The publications on the research of disease-resistant plants were 7 articles, 3 for the development of stress-resistant and 2 for the herbicide-resistant plants, respectively. It is believed that the last 10 year's investment through government organizations has just strengthen the capacity for the next big stride on agricultural biotechnology in Korea.

Effect of physically contained greenhouse covered by fine mesh on pollen dispersal in maize

  • Watanabe, Shin;Kamada, Hiroshi;Ezura, Hiroshi
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.367-370
    • /
    • 2005
  • The risk from genetically modified (GM) plants results from the possibility of gene contamination producing adverse effects on biological diversity by introducing herbicide or insect resistance into related plants or weeds (NAS 2002). The concern about the leakage of genes from GM plants into the environment has primarily focused on pollen that could be wind-borne for long distances. During the period of fisk assessment in Japan, physical containment is applied as a measure of reducing gene flow via the dispersal of pollen from GM plants into the surrounding environment In this study, we tried to estimate the effect of physically contained greenhouse covered by 1-mm fine mesh to reduce pollen dispersal by researching cross pollination rate between non-GM yellow maize in a greenhouse and silver maize outside the greenhouse.

  • PDF

Current status on the development of GM plants based on the published articles and patents in Korea (논문 및 특허의 분석을 통한 국내 GM식물의 개발 현황)

  • Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.394-399
    • /
    • 2010
  • During the last three years (2007 to 2009), 1,212 articles of SCI journals, 451 articles of non-SCI journals, and 348 items of registered patents were reported by the research scientists involved in the BioGreen 21 Project, Rural Development Administration and Crop Functional Genomics Center (CFGC), The 21st century Frontier Program, in Korea. Out of these, the percentages of articles or patents directly related to the development of GM plants were 6.0% (SCI), 10.2% (non-SCI) and 12.6% (patents) from BioGreen 21 Project while 15.7% (SCI), 21.1% (non-SCI) and 81.6% (patents) from CFGC, respectively. It was observed that rice and pepper were major host crops for genetic modification mainly to provide the resistance or tolerance activities against to biotic as well as abiotic stresses. Very low cases were reported for the field test of GM plants regarding to the commercialization (less than 15 articles). These observations indicates that more research grants needs to be invested for the risk assessment of GM plants under early developmental stage to commercialize in Korea.

Secretory Production of hGM-CSF with a High Specific Biological Activity by Transgenic Plant Cell Suspension Culture

  • Kwon, Tae-Ho;Shin, Young-Mi;Kim, Young-Sook;Jang, Yong-Suk;Yang, Moon-Sik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.135-141
    • /
    • 2003
  • The human granulocyte-macrophage colony stimulating factor (hGM-CSF) gene was introduced into tobacco plants. The cell suspension culture was established from leaf-derived calli of the transgenic tobacco plants in order to express and secrete a biologically active hGM -CSF. The recombinant hGM-CSF from the transgenic plant cell culture (prhGM-CSF) was identified as a yield of about 180 ${\mu}$g/L in the culture filtrate, as determined by ELISA. The addition of 0.5 g/L polyvinylpyrrolidone (PVP) to the plant cell culture medium both stabilized the secreted prhGM-CSF and increased the level of production approximately 1.5-fold to 270 ${\mu}$g/L. The biological activity of the prhGM-CSF was confirmed by measuring the proliferation of the hGM-CSF-dependent cell line, TF-1. Interestingly, the specific activity of the prhGM-CSF was estimated to be approximately 2.7 times higher than that of a commercially available preparation from E. coli.

Identification of diversified functions of soybean FT homologs in photoperiod-dependent flowering time control

  • Lee, Su Hyeon;Choi, Cheol Woo;Kim, Min Chul
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.100-100
    • /
    • 2017
  • FT is one of the major floral activator in plant flowering. FT determines the changing point of time from vegetative stage to reproductive stage. To understand the role of FT homologs in short-day plant soybean, we identified 10 soybean FT homologous genes and named GmFTs. We figured out that 10 GmFT genes were further categorized into three subclades through phylogenetic analysis. Expression analysis of GmFT genes indicated that they might have different functions in photoperiod-dependent soybean flowering. Most of GmFTs, for example, GmFT2a, GmFT2b, GmFT5a and GmFT6 mainly expressed in soybean leaves at short-day condition. However, interestingly GmFT1a and GmFT4 represented opposite expression pattern to other GmFTs. Arabidopsis transgenic plants overexpressing GmFT2a and GmFT5a exhibited extremely early flowering. In contrast, overexpression of GmFT4 delayed flowering of Arabidopsis transgenic plants. The results suggest that GmFT4 has antagonistic role to other GmFTs in soybean flowering. Interestingly, mRNA level of GmFT2a is higher in early flowering soybean accessions than in late flowering ones. Moreover, the highest point of mRNA level of GmFT2a showed the positive correlation with the timing of flowering of soybean accessions. But that of GmFT4 showed opposite pattern. Here, we report that soybean FT homologs might acquire different functions in photoperiod-dependent flowering through the functional diversification during evolution.

  • PDF